論文の概要: PRISM: Lightweight Multivariate Time-Series Classification through Symmetric Multi-Resolution Convolutional Layers
- arxiv url: http://arxiv.org/abs/2508.04503v1
- Date: Wed, 06 Aug 2025 14:50:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.772118
- Title: PRISM: Lightweight Multivariate Time-Series Classification through Symmetric Multi-Resolution Convolutional Layers
- Title(参考訳): PRISM:対称多解畳み込み層による軽量多変量時系列分類
- Authors: Federico Zucchi, Thomas Lampert,
- Abstract要約: PRISM (Per-channel Resolution-Informed Symmetric Module) は、対称有限インパルス応答フィルタを複数の時間スケールで適用する畳み込み型特徴抽出器である。
人間の活動、睡眠ステージ、バイオメディカルベンチマーク全体にわたって、PRISMはCNNとTransformerのベースラインをマッチまたは上回る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariate time-series classification is pivotal in domains ranging from wearable sensing to biomedical monitoring. Despite recent advances, Transformer- and CNN-based models often remain computationally heavy, offer limited frequency diversity, and require extensive parameter budgets. We propose PRISM (Per-channel Resolution-Informed Symmetric Module), a convolutional-based feature extractor that applies symmetric finite-impulse-response (FIR) filters at multiple temporal scales, independently per channel. This multi-resolution, per-channel design yields highly frequency-selective embeddings without any inter-channel convolutions, greatly reducing model size and complexity. Across human-activity, sleep-stage and biomedical benchmarks, PRISM, paired with lightweight classification heads, matches or outperforms leading CNN and Transformer baselines, while using roughly an order of magnitude fewer parameters and FLOPs. By uniting classical signal processing insights with modern deep learning, PRISM offers an accurate, resource-efficient solution for multivariate time-series classification.
- Abstract(参考訳): 多変量時系列分類は、ウェアラブルセンシングからバイオメディカルモニタリングまで幅広い分野において重要である。
近年の進歩にもかかわらず、Transformer と CNN ベースのモデルは、しばしば計算的に重いままであり、周波数の多様性が限られており、幅広いパラメーター予算を必要としている。
PRISM(Per-channel Resolution-Informed Symmetric Module)は、対称有限インパルス(FIR)フィルタを複数の時間スケールで、独立にチャネル毎に適用する畳み込み型特徴抽出器である。
このマルチ解像度なチャネルごとの設計は、チャネル間の畳み込みなしに高い周波数選択的な埋め込みをもたらし、モデルのサイズと複雑さを大幅に減らす。
人間の活動、睡眠ステージ、バイオメディカルベンチマークであるPRISMは、軽量な分類ヘッド、CNNやTransformerのベースラインをリードするマッチやパフォーマンスと組み合わせられ、パラメータやFLOPをおよそ1桁減らした。
古典的な信号処理の洞察を現代のディープラーニングと統合することにより、PRISMは多変量時系列分類のための正確でリソース効率の良いソリューションを提供する。
関連論文リスト
- DNN-Based Precoding in RIS-Aided mmWave MIMO Systems With Practical Phase Shift [56.04579258267126]
本稿では、直接通信路を妨害したミリ波マルチインプット多重出力(MIMO)システムのスループットを最大化する。
リコンフィギュアブルインテリジェントサーフェス(RIS)は、視線(LoS)とマルチパス効果に関連するmmWave特性を考慮して伝送性を高めるために使用される。
ディープニューラルネットワーク(DNN)は、より高速なコードワード選択を容易にするために開発された。
論文 参考訳(メタデータ) (2025-07-03T17:35:06Z) - MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
時系列予測は、周波数の異なる周期特性から導かれる。
マルチ周波数参照系列相関解析に基づく新しい時系列予測手法を提案する。
主要なオープンデータセットと合成データセットの実験は、最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2025-03-11T11:40:14Z) - MPTSNet: Integrating Multiscale Periodic Local Patterns and Global Dependencies for Multivariate Time Series Classification [18.142252811096643]
我々は,MPTSNet(Multiscale Periodic Time Series Network)を提案する。
MPTSNetは、マルチスケールな局所パターンとグローバルな相関を統合し、時系列の固有情報をフル活用する。
UEAベンチマークデータセットの実験は、提案されたMPTSNetがMTSCタスクの21の高度なベースラインを上回っていることを示している。
論文 参考訳(メタデータ) (2025-03-07T17:07:51Z) - MMFNet: Multi-Scale Frequency Masking Neural Network for Multivariate Time Series Forecasting [6.733646592789575]
長期時系列予測(LTSF)は、電力消費計画、財務予測、疾病の伝播分析など、多くの実世界の応用において重要である。
MMFNetは,マルチスケールマスク付き周波数分解手法を利用して,長期多変量予測を向上する新しいモデルである。
MMFNetは、時系列を様々なスケールの周波数セグメントに変換し、学習可能なマスクを用いて非関連成分を適応的にフィルタリングすることで、微細で中間的で粗い時間パターンをキャプチャする。
論文 参考訳(メタデータ) (2024-10-02T22:38:20Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-19T13:33:38Z) - SMORE: Similarity-based Hyperdimensional Domain Adaptation for
Multi-Sensor Time Series Classification [17.052624039805856]
マルチセンサ時系列分類のための新しい資源効率ドメイン適応(DA)アルゴリズムであるSMOREを提案する。
SMOREは、最先端(SOTA)のDNNベースのDAアルゴリズムよりも平均1.98%高い精度で18.81倍高速トレーニングと4.63倍高速推論を実現している。
論文 参考訳(メタデータ) (2024-02-20T18:48:49Z) - One-Dimensional Deep Image Prior for Curve Fitting of S-Parameters from
Electromagnetic Solvers [57.441926088870325]
Deep Image Prior(ディープ・イメージ・プライオリ、ディープ・イメージ・プライオリ、DIP)は、ランダムなd畳み込みニューラルネットワークの重みを最適化し、ノイズや過度な測定値からの信号に適合させる技術である。
本稿では,Vector Fitting (VF) の実装に対して,ほぼすべてのテスト例において優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-06T20:28:37Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
本研究では、周波数領域の構造を利用して、空間や時間における長距離相関を効率的に学習するために設計されたディープニューラルネットワークについて検討する。
この研究は、単一変換による周波数領域学習のための青写真を導入している。
論文 参考訳(メタデータ) (2022-11-26T01:56:05Z) - TMS: A Temporal Multi-scale Backbone Design for Speaker Embedding [60.292702363839716]
話者埋め込みのための現在のSOTAバックボーンネットワークは、話者表現のためのマルチブランチネットワークアーキテクチャを用いた発話からマルチスケール特徴を集約するように設計されている。
本稿では, 話者埋め込みネットワークにおいて, 計算コストの増大を伴わずに, マルチスケール分岐を効率的に設計できる効果的な時間的マルチスケール(TMS)モデルを提案する。
論文 参考訳(メタデータ) (2022-03-17T05:49:35Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
チャネル推定とビームフォーミングは、周波数分割二重化(FDD)大規模マルチインプット多重出力(MIMO)システムにおいて重要な役割を果たす。
受信したアップリンクパイロットに応じて,基地局のビームフォーマを直接最適化する深層学習方式を提案する。
エンド・ツー・エンドの設計のスケーラビリティを向上させるために,ニューラルキャリブレーション法を提案する。
論文 参考訳(メタデータ) (2021-08-03T14:26:14Z) - Compute and memory efficient universal sound source separation [23.152611264259225]
汎用オーディオソース分離のための効率的なニューラルネットワークアーキテクチャのファミリーを提供します。
この畳み込みネットワークのバックボーン構造は、SuDoRM-RF(Sccessive DOwnsampling and Resampling of Multi-Resolution Features)である。
実験の結果,SuDoRM-RFモデルは相容れない性能を示し,またいくつかの最先端ベンチマークを上回る性能を示した。
論文 参考訳(メタデータ) (2021-03-03T19:16:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。