Augmentation-based Domain Generalization and Joint Training from Multiple Source Domains for Whole Heart Segmentation
- URL: http://arxiv.org/abs/2508.04552v1
- Date: Wed, 06 Aug 2025 15:37:22 GMT
- Title: Augmentation-based Domain Generalization and Joint Training from Multiple Source Domains for Whole Heart Segmentation
- Authors: Franz Thaler, Darko Stern, Gernot Plank, Martin Urschler,
- Abstract summary: cardiovascular diseases are the leading cause of death worldwide.<n>Semantic segmentations of important cardiac structures that represent the whole heart are useful to assess patient-specific cardiac morphology and pathology.<n>Deep learning-based methods for medical image segmentation achieved great advancements over the last decade.
- Score: 0.49923266458151416
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As the leading cause of death worldwide, cardiovascular diseases motivate the development of more sophisticated methods to analyze the heart and its substructures from medical images like Computed Tomography (CT) and Magnetic Resonance (MR). Semantic segmentations of important cardiac structures that represent the whole heart are useful to assess patient-specific cardiac morphology and pathology. Furthermore, accurate semantic segmentations can be used to generate cardiac digital twin models which allows e.g. electrophysiological simulation and personalized therapy planning. Even though deep learning-based methods for medical image segmentation achieved great advancements over the last decade, retaining good performance under domain shift -- i.e. when training and test data are sampled from different data distributions -- remains challenging. In order to perform well on domains known at training-time, we employ a (1) balanced joint training approach that utilizes CT and MR data in equal amounts from different source domains. Further, aiming to alleviate domain shift towards domains only encountered at test-time, we rely on (2) strong intensity and spatial augmentation techniques to greatly diversify the available training data. Our proposed whole heart segmentation method, a 5-fold ensemble with our contributions, achieves the best performance for MR data overall and a performance similar to the best performance for CT data when compared to a model trained solely on CT. With 93.33% DSC and 0.8388 mm ASSD for CT and 89.30% DSC and 1.2411 mm ASSD for MR data, our method demonstrates great potential to efficiently obtain accurate semantic segmentations from which patient-specific cardiac twin models can be generated.
Related papers
- Global and Local Contrastive Learning for Joint Representations from Cardiac MRI and ECG [40.407824759778784]
PTACL (Patient and Temporal Alignment Contrastive Learning) is a multimodal contrastive learning framework that enhances ECG representations by integrating-temporal information from CMR.<n>We evaluate PTACL on paired ECG-CMR data from 27,951 subjects in the UK Biobank.<n>Our results highlight the potential of PTACL to enhance non-invasive cardiac diagnostics using ECG.
arXiv Detail & Related papers (2025-06-24T17:19:39Z) - Sensing Cardiac Health Across Scenarios and Devices: A Multi-Modal Foundation Model Pretrained on Heterogeneous Data from 1.7 Million Individuals [36.08910150609342]
We present a cardiac sensing foundation model (CSFM) that learns unified representations from vast, heterogeneous health records.<n>Our model is pretrained on an innovative multi-modal integration of data from multiple large-scale datasets.<n> CSFM consistently outperforms traditional one-modal-one-task approaches.
arXiv Detail & Related papers (2025-06-23T20:58:12Z) - Foundation Model for Whole-Heart Segmentation: Leveraging Student-Teacher Learning in Multi-Modal Medical Imaging [0.510750648708198]
Whole-heart segmentation from CT and MRI scans is crucial for cardiovascular disease analysis.<n>Existing methods struggle with modality-specific biases and the need for extensive labeled datasets.<n>We propose a foundation model for whole-heart segmentation using a self-supervised learning framework based on a student-teacher architecture.
arXiv Detail & Related papers (2025-03-24T14:47:54Z) - Multi-Disease-Aware Training Strategy for Cardiac MR Image Segmentation [5.206138376072312]
Deep learning-based segmentation methods have recently garnered significant attention due to their impressive performance.<n>These segmentation methods are typically good at partitioning regularly shaped organs, such as the left ventricle (LV) and the myocardium (MYO)<n>They perform poorly on irregularly shaped organs, such as the right ventricle (RV)
arXiv Detail & Related papers (2025-03-23T01:29:27Z) - MSWAL: 3D Multi-class Segmentation of Whole Abdominal Lesions Dataset [41.69818086021188]
We introduce MSWAL, the first 3D Multi-class of the Whole Abdominal Lesions dataset.<n>MSWAL broadens the coverage of various common lesion types, such as gallstones, kidney stones, liver tumors, kidney tumors, pancreatic cancer, liver cysts, and kidney cysts.<n>We propose Inception nnU-Net, a novel segmentation framework that effectively integrates an Inception module with the nnU-Net architecture to extract information from different fields.
arXiv Detail & Related papers (2025-03-17T06:31:25Z) - A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT [67.34586036959793]
There is no fully annotated CT dataset with all anatomies delineated for training.<n>We propose a novel continual learning-driven CT model that can segment complete anatomies.<n>Our single unified CT segmentation model, CL-Net, can highly accurately segment a clinically comprehensive set of 235 fine-grained whole-body anatomies.
arXiv Detail & Related papers (2025-03-16T23:55:02Z) - Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challenge introduced the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones.<n>This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms.
arXiv Detail & Related papers (2025-02-07T21:09:05Z) - Preserving Cardiac Integrity: A Topology-Infused Approach to Whole Heart Segmentation [6.495726693226574]
Whole heart segmentation (WHS) supports cardiovascular disease diagnosis, disease monitoring, treatment planning, and prognosis.
This paper introduces a new topology-preserving module that is integrated into deep neural networks.
The implementation achieves anatomically plausible segmentation by using learned topology-preserving fields, which are based entirely on 3D convolution and are therefore very effective for 3D voxel data.
arXiv Detail & Related papers (2024-10-14T14:32:05Z) - CMRxRecon2024: A Multi-Modality, Multi-View K-Space Dataset Boosting Universal Machine Learning for Accelerated Cardiac MRI [40.11088079783521]
The CMRxRecon2024 dataset is the largest and most protocal-diverse publicly available cardiac k-space dataset.<n>It is acquired from 330 healthy volunteers, covering commonly used modalities, anatomical views, and acquisition trajectories in clinical cardiac MRI.
arXiv Detail & Related papers (2024-06-27T09:50:20Z) - DG-TTA: Out-of-domain Medical Image Segmentation through Augmentation and Descriptor-driven Domain Generalization and Test-Time Adaptation [43.842694540544194]
Applying pretrained medical deep learning segmentation models on out-of-domain images often yields predictions of insufficient quality.<n>In this study, we propose to use a powerful generalizing descriptor along with augmentation to enable domain-generalized pretraining and test-time adaptation.
arXiv Detail & Related papers (2023-12-11T10:26:21Z) - Multi-class probabilistic atlas-based whole heart segmentation method in
cardiac CT and MRI [4.144197343838299]
This article proposes a framework for multi-class whole heart segmentation employing non-rigid registration-based probabilistic atlas.
We also propose a non-rigid registration pipeline utilizing a multi-resolution strategy for obtaining the highest attainable mutual information.
The proposed approach exhibits an encouraging achievement, yielding a mean volume overlapping error of 14.5 % for CT scans.
arXiv Detail & Related papers (2021-02-03T01:02:09Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.