Improved Training Strategies for Physics-Informed Neural Networks using Real Experimental Data in Aluminum Spot Welding
- URL: http://arxiv.org/abs/2508.04595v1
- Date: Wed, 06 Aug 2025 16:14:00 GMT
- Title: Improved Training Strategies for Physics-Informed Neural Networks using Real Experimental Data in Aluminum Spot Welding
- Authors: Jan A. Zak, Christian Weißenfels,
- Abstract summary: Resistance spot welding is the dominant joining process for the body-in-white in the automotive industry, where the weld nugget diameter is the key quality metric.<n>This paper introduces a physics-informed neural network to reconstruct internal process states from experimental data.<n>It supports transferring welding stages from steel to aluminum, and demonstrates strong potential for fast, model-based quality control in industrial applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Resistance spot welding is the dominant joining process for the body-in-white in the automotive industry, where the weld nugget diameter is the key quality metric. Its measurement requires destructive testing, limiting the potential for efficient quality control. Physics-informed neural networks were investigated as a promising tool to reconstruct internal process states from experimental data, enabling model-based and non-invasive quality assessment in aluminum spot welding. A major challenge is the integration of real-world data into the network due to competing optimization objectives. To address this, we introduce two novel training strategies. First, experimental losses for dynamic displacement and nugget diameter are progressively included using a fading-in function to prevent excessive optimization conflicts. We also implement a custom learning rate scheduler and early stopping based on a rolling window to counteract premature reduction due to increased loss magnitudes. Second, we introduce a conditional update of temperature-dependent material parameters via a look-up table, activated only after a loss threshold is reached to ensure physically meaningful temperatures. An axially symmetric two-dimensional model was selected to represent the welding process accurately while maintaining computational efficiency. To reduce computational burden, the training strategies and model components were first systematically evaluated in one dimension, enabling controlled analysis of loss design and contact models. The two-dimensional network predicts dynamic displacement and nugget growth within the experimental confidence interval, supports transferring welding stages from steel to aluminum, and demonstrates strong potential for fast, model-based quality control in industrial applications.
Related papers
- LaPON: A Lagrange's-mean-value-theorem-inspired operator network for solving PDEs and its application on NSE [8.014720523981385]
We propose LaPON, an operator network inspired by the Lagrange's mean value theorem.<n>It embeds prior knowledge directly into the neural network architecture instead of the loss function.<n>LaPON provides a scalable and reliable solution for high-fidelity fluid dynamics simulation.
arXiv Detail & Related papers (2025-05-18T10:45:17Z) - Data-driven Power Loss Identification through Physics-Based Thermal Model Backpropagation [1.9997803560872798]
Digital twins for power electronics require accurate power losses whose direct measurements are often impractical or impossible in real-world applications.<n>This paper presents a novel hybrid framework that combines physics-based thermal modeling with data-driven techniques to identify and correct power losses accurately using only temperature measurements.
arXiv Detail & Related papers (2025-03-31T18:37:14Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Doubly Robust Causal Effect Estimation under Networked Interference via Targeted Learning [24.63284452991301]
We propose a doubly robust causal effect estimator under networked interference.
Specifically, we generalize the targeted learning technique into the networked interference setting.
We devise an end-to-end causal effect estimator by transforming the identified theoretical condition into a targeted loss.
arXiv Detail & Related papers (2024-05-06T10:49:51Z) - Rethinking Resource Management in Edge Learning: A Joint Pre-training and Fine-tuning Design Paradigm [87.47506806135746]
In some applications, edge learning is experiencing a shift in focusing from conventional learning from scratch to new two-stage learning.
This paper considers the problem of joint communication and computation resource management in a two-stage edge learning system.
It is shown that the proposed joint resource management over the pre-training and fine-tuning stages well balances the system performance trade-off.
arXiv Detail & Related papers (2024-04-01T00:21:11Z) - Learning-based adaption of robotic friction models [50.72489248401199]
We introduce a novel approach to adapt an existing friction model to new dynamics using as little data as possible.<n>Our method does not rely on data with external load during training, eliminating the need for external torque sensors.
arXiv Detail & Related papers (2023-10-25T14:50:15Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
Self-attention modules (SAMs) produce strongly correlated attention maps across different layers.
Dense-and-Implicit Attention (DIA) shares SAMs across layers and employs a long short-term memory module.
Our simple yet effective DIA can consistently enhance various network backbones.
arXiv Detail & Related papers (2022-10-27T13:24:08Z) - RAMP-Net: A Robust Adaptive MPC for Quadrotors via Physics-informed
Neural Network [6.309365332210523]
We propose a Robust Adaptive MPC framework via PINNs (RAMP-Net), which uses a neural network trained partly from simple ODEs and partly from data.
We report 7.8% to 43.2% and 8.04% to 61.5% reduction in tracking errors for speeds ranging from 0.5 to 1.75 m/s compared to two SOTA regression based MPC methods.
arXiv Detail & Related papers (2022-09-19T16:11:51Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - Physics-Informed Neural Network for Modelling the Thermochemical Curing
Process of Composite-Tool Systems During Manufacture [11.252083314920108]
We present a PINN to simulate thermochemical evolution of a composite material on a tool undergoing cure in an autoclave.
We train the PINN with a technique that automatically adapts the weights on the loss terms corresponding to PDE, boundary, interface, and initial conditions.
The performance of the proposed PINN is demonstrated in multiple scenarios with different material thicknesses and thermal boundary conditions.
arXiv Detail & Related papers (2020-11-27T00:56:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.