AdvDINO: Domain-Adversarial Self-Supervised Representation Learning for Spatial Proteomics
- URL: http://arxiv.org/abs/2508.04955v1
- Date: Thu, 07 Aug 2025 00:51:54 GMT
- Title: AdvDINO: Domain-Adversarial Self-Supervised Representation Learning for Spatial Proteomics
- Authors: Stella Su, Marc Harary, Scott J. Rodig, William Lotter,
- Abstract summary: Self-supervised learning (SSL) has emerged as a powerful approach for learning visual representations without manual annotations.<n>We present AdvDINO, a domain-adversarial self-supervised learning framework that integrates a gradient reversal layer into the DINOv2 architecture to promote domain-invariant feature learning.
- Score: 0.42855555838080833
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised learning (SSL) has emerged as a powerful approach for learning visual representations without manual annotations. However, the robustness of standard SSL methods to domain shift -- systematic differences across data sources -- remains uncertain, posing an especially critical challenge in biomedical imaging where batch effects can obscure true biological signals. We present AdvDINO, a domain-adversarial self-supervised learning framework that integrates a gradient reversal layer into the DINOv2 architecture to promote domain-invariant feature learning. Applied to a real-world cohort of six-channel multiplex immunofluorescence (mIF) whole slide images from non-small cell lung cancer patients, AdvDINO mitigates slide-specific biases to learn more robust and biologically meaningful representations than non-adversarial baselines. Across $>5.46$ million mIF image tiles, the model uncovers phenotype clusters with distinct proteomic profiles and prognostic significance, and improves survival prediction in attention-based multiple instance learning. While demonstrated on mIF data, AdvDINO is broadly applicable to other imaging domains -- including radiology, remote sensing, and autonomous driving -- where domain shift and limited annotated data hinder model generalization and interpretability.
Related papers
- Multimodal Causal-Driven Representation Learning for Generalizable Medical Image Segmentation [56.52520416420957]
We propose Multimodal Causal-Driven Representation Learning (MCDRL) to tackle domain generalization in medical image segmentation.<n>MCDRL consistently outperforms competing methods, yielding superior segmentation accuracy and exhibiting robust generalizability.
arXiv Detail & Related papers (2025-08-07T03:41:41Z) - Leveraging Vision-Language Embeddings for Zero-Shot Learning in Histopathology Images [7.048241543461529]
We propose a novel framework called Multi-Resolution Prompt-guided Hybrid Embedding (MR-PHE) to address these challenges in zero-shot histopathology image classification.<n>We introduce a hybrid embedding strategy that integrates global image embeddings with weighted patch embeddings.<n>A similarity-based patch weighting mechanism assigns attention-like weights to patches based on their relevance to class embeddings.
arXiv Detail & Related papers (2025-03-13T12:18:37Z) - MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention [52.106879463828044]
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease.<n>We present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention.<n>Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance.
arXiv Detail & Related papers (2025-03-01T07:02:30Z) - FedSemiDG: Domain Generalized Federated Semi-supervised Medical Image Segmentation [19.87797382888023]
Medical image segmentation is challenging due to the diversity of medical images and the lack of labeled data.<n>We present a novel framework, Federated Generalization-Aware SemiSupervised Learning (FGASL), to address the challenges in FedSemiDG.<n>Our method significantly outperforms state-of-the-art FSSL and domain generalization approaches, achieving robust generalization on unseen domains.
arXiv Detail & Related papers (2025-01-13T14:54:49Z) - A self-supervised framework for learning whole slide representations [52.774822784847565]
We present Slide Pre-trained Transformers (SPT) for gigapixel-scale self-supervision of whole slide images.
We benchmark SPT visual representations on five diagnostic tasks across three biomedical microscopy datasets.
arXiv Detail & Related papers (2024-02-09T05:05:28Z) - Glioma subtype classification from histopathological images using
in-domain and out-of-domain transfer learning: An experimental study [9.161480191416551]
We compare various transfer learning strategies and deep learning architectures for computer-aided classification of adult-type diffuse gliomas.
A semi-supervised learning approach is proposed, where the fine-tuned models are utilized to predict the labels of unannotated regions of the whole slide images.
The models are subsequently retrained using the ground-truth labels and weak labels determined in the previous step, providing superior performance in comparison to standard in-domain transfer learning.
arXiv Detail & Related papers (2023-09-29T13:22:17Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
In real-world scenarios, it is common for models to encounter data from new and different domains to which they were not exposed to during training.
domain generalization (DG) is a promising direction as it enables models to handle data from previously unseen domains.
We introduce a novel DG method called Adversarial Intensity Attack (AdverIN), which leverages adversarial training to generate training data with an infinite number of styles.
arXiv Detail & Related papers (2023-04-05T19:40:51Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
We propose a new paradigm in which data from a diverse range of acquisition conditions are "harmonized" to a common reference domain.
We test this approach on two example problems, namely MRI-based brain age prediction and classification of schizophrenia.
arXiv Detail & Related papers (2020-10-11T22:01:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.