論文の概要: Evaluating the Role of Large Language Models in Legal Practice in India
- arxiv url: http://arxiv.org/abs/2508.09713v1
- Date: Wed, 13 Aug 2025 11:04:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-14 20:42:00.865127
- Title: Evaluating the Role of Large Language Models in Legal Practice in India
- Title(参考訳): インドにおける法律実務における大規模言語モデルの役割評価
- Authors: Rahul Hemrajani,
- Abstract要約: 人工知能の法的職業への統合は、重要な法的タスクを実行するための大規模言語モデルの能力に関する重要な疑問を提起する。
私は、GPT、Claude、LlamaといったLCMが、インドにおける重要な法的タスクをいかにうまく実行しているかを実証的に評価します。
LLMは特定の法的タスクを増強できるが、人間の専門知識は、ニュアンスな推論と法律の正確な適用に不可欠である、と私は結論づける。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of Artificial Intelligence(AI) into the legal profession raises significant questions about the capacity of Large Language Models(LLM) to perform key legal tasks. In this paper, I empirically evaluate how well LLMs, such as GPT, Claude, and Llama, perform key legal tasks in the Indian context, including issue spotting, legal drafting, advice, research, and reasoning. Through a survey experiment, I compare outputs from LLMs with those of a junior lawyer, with advanced law students rating the work on helpfulness, accuracy, and comprehensiveness. LLMs excel in drafting and issue spotting, often matching or surpassing human work. However, they struggle with specialised legal research, frequently generating hallucinations, factually incorrect or fabricated outputs. I conclude that while LLMs can augment certain legal tasks, human expertise remains essential for nuanced reasoning and the precise application of law.
- Abstract(参考訳): 人工知能(AI)の法的職業への統合は、重要な法的タスクを実行するためのLarge Language Models(LLM)の能力に関する重要な疑問を提起する。
本稿では,GPT,Claude,LlamaなどのLCMが,問題スポッティング,法的ドラフト,アドバイス,研究,推論など,インドの文脈における重要な法的タスクをいかにうまく行うかを実証的に評価する。
調査実験を通じて,LLMのアウトプットとジュニア弁護士のアウトプットを比較し,上級法学部生が有用性,正確性,包括性を評価した。
LLMは起草や問題スポッティングに優れており、しばしば人間の仕事と一致するか、超えている。
しかし、彼らは専門の法学研究に苦慮し、しばしば幻覚を生み出す。
LLMは特定の法的タスクを増強できるが、人間の専門知識は、ニュアンスな推論と法律の正確な適用に不可欠である、と私は結論づける。
関連論文リスト
- LEXam: Benchmarking Legal Reasoning on 340 Law Exams [61.344330783528015]
LEXamは、様々な科目と学位レベルの116の法学校コースにまたがる340の法試験から派生した、新しいベンチマークである。
このデータセットは、英語とドイツ語で4,886の法試験の質問で構成されており、その中には2,841の長文のオープンエンドの質問と2,045のマルチチョイスの質問が含まれている。
論文 参考訳(メタデータ) (2025-05-19T08:48:12Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Lawは、中国法に関する様々な法的クエリに対処するための特殊なLLMである。
われわれは、中国法域に100万以上のクエリを含むデータセットを慎重に構築する。
InternLM-LawはLawBench上で最高の平均性能を達成し、20サブタスク中13サブタスクでGPT-4を含む最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-06-21T06:19:03Z) - Exploring the Nexus of Large Language Models and Legal Systems: A Short Survey [1.0770079992809338]
LLM(Large Language Models)の能力は、法律分野におけるユニークな役割をますます示している。
この調査は、法的テキスト理解、事例検索、分析などのタスクにおけるLLMと法体系の相乗効果について考察する。
この調査では、さまざまな法律システム用に調整された微調整された法的なLLMの最新の進歩と、さまざまな言語で微調整されたLLMのための法的なデータセットが紹介されている。
論文 参考訳(メタデータ) (2024-04-01T08:35:56Z) - Human Centered AI for Indian Legal Text Analytics [5.162515210222778]
本稿では,LTAにおける大規模言語モデルの可能性について考察する。
本稿では,LTAタスクをLLMで実行するために,人間の入力を主に組み込んだ,人間中心の複合AIシステムについて紹介する。
論文 参考訳(メタデータ) (2024-03-16T15:17:13Z) - BLT: Can Large Language Models Handle Basic Legal Text? [44.89873147675516]
GPT-4とClaudeは、基本的な法的テキスト処理では性能が良くない。
ベンチマークの粗悪なパフォーマンスは、法的慣行の信頼性を疑うものだ。
トレーニングセットの微調整は、小さなモデルでもほぼ完璧なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-11-16T09:09:22Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
大規模言語モデル(LLM)は、ドメイン固有のアプリケーションに大きな可能性を示している。
GPT-4の法律評価をめぐる近年の論争は、現実の法的タスクにおけるパフォーマンスに関する疑問を提起している。
我々は,LLMに基づく実践的ベースラインソリューションを設計し,法的判断予測の課題を検証した。
論文 参考訳(メタデータ) (2023-10-18T07:38:04Z) - LAiW: A Chinese Legal Large Language Models Benchmark [17.66376880475554]
一般および法的ドメイン LLM は LegalAI の様々なタスクにおいて高いパフォーマンスを示している。
われわれは、法的な実践の論理に基づいて、中国の法的LLMベンチマークLAiWを最初に構築しました。
論文 参考訳(メタデータ) (2023-10-09T11:19:55Z) - Large Language Models as Tax Attorneys: A Case Study in Legal
Capabilities Emergence [5.07013500385659]
本稿では,税法の適用におけるLarge Language Models(LLM)の機能について考察する。
実験では,その後のOpenAIモデルリリースにおけるパフォーマンスの向上とともに,新たな法的理解能力を実証した。
発見は、特に拡張の促進と正しい法的文書と組み合わせることで、高いレベルの精度で実行可能であるが、専門家の税務弁護士レベルではまだ実行できないことを示している。
論文 参考訳(メタデータ) (2023-06-12T12:40:48Z) - A Short Survey of Viewing Large Language Models in Legal Aspect [0.0]
大規模言語モデル(LLM)は、自然言語処理、コンピュータビジョン、強化学習など、多くの分野に変化をもたらした。
LLMの法的分野への統合は、プライバシーの懸念、偏見、説明可能性など、いくつかの法的問題を引き起こしている。
論文 参考訳(メタデータ) (2023-03-16T08:01:22Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。