論文の概要: A Short Survey of Viewing Large Language Models in Legal Aspect
- arxiv url: http://arxiv.org/abs/2303.09136v1
- Date: Thu, 16 Mar 2023 08:01:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-17 16:27:27.119554
- Title: A Short Survey of Viewing Large Language Models in Legal Aspect
- Title(参考訳): 法律面における大規模言語モデル視聴に関する調査研究
- Authors: Zhongxiang Sun
- Abstract要約: 大規模言語モデル(LLM)は、自然言語処理、コンピュータビジョン、強化学習など、多くの分野に変化をもたらした。
LLMの法的分野への統合は、プライバシーの懸念、偏見、説明可能性など、いくつかの法的問題を引き起こしている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have transformed many fields, including natural
language processing, computer vision, and reinforcement learning. These models
have also made a significant impact in the field of law, where they are being
increasingly utilized to automate various legal tasks, such as legal judgement
prediction, legal document analysis, and legal document writing. However, the
integration of LLMs into the legal field has also raised several legal
problems, including privacy concerns, bias, and explainability. In this survey,
we explore the integration of LLMs into the field of law. We discuss the
various applications of LLMs in legal tasks, examine the legal challenges that
arise from their use, and explore the data resources that can be used to
specialize LLMs in the legal domain. Finally, we discuss several promising
directions and conclude this paper. By doing so, we hope to provide an overview
of the current state of LLMs in law and highlight the potential benefits and
challenges of their integration.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語処理、コンピュータビジョン、強化学習など、多くの分野に変化をもたらした。
これらのモデルは法分野にも大きな影響を与えており、法的判断の予測、法的文書分析、法的文書作成など、様々な法的タスクの自動化にますます活用されている。
しかし、LLMの法的分野への統合は、プライバシーの懸念、偏見、説明可能性など、いくつかの法的問題を引き起こしている。
本稿では,LLMの法分野への統合について検討する。
法律業務におけるLLMの様々な応用について論じ、その使用から生じる法的課題を考察し、法律分野におけるLLMの専門化に使用できるデータ資源について検討する。
最後に,いくつかの有望な方向性について議論し,本論文をまとめる。
そうすることで、法律におけるLLMの現状の概要を提供し、それらの統合の潜在的なメリットと課題を強調したいと考えています。
関連論文リスト
- Legal Prompt Engineering for Multilingual Legal Judgement Prediction [2.539568419434224]
Legal Prompt Engineering (LPE) または Legal Prompting は、大規模言語モデル (LLM) を指導し、支援するプロセスである。
欧州人権裁判所(英語)及びスイス連邦最高裁判所(ドイツ語・フランス語・イタリア語)の事例文におけるゼロショットLPEの性能について検討する。
論文 参考訳(メタデータ) (2022-12-05T12:17:02Z) - Adapters for Enhanced Modeling of Multilingual Knowledge and Text [54.02078328453149]
言語モデルは多言語言語モデル(MLLM)に拡張された。
知識グラフは、注意深いキュレーションを必要とし、少数の高リソース言語でのみ利用可能である、明示的な三重形式で事実を含む。
我々は,MLLMを多言語知識グラフ(MLKG)からの知識で拡張し,言語や知識グラフのタスクに多くの言語で取り組むことを提案する。
論文 参考訳(メタデータ) (2022-10-24T21:33:42Z) - Shortcut Learning of Large Language Models in Natural Language
Understanding: A Survey [119.45683008451698]
大規模言語モデル(LLM)は、一連の自然言語理解タスクにおいて最先端のパフォーマンスを達成した。
予測のショートカットとしてデータセットのバイアスやアーティファクトに依存するかも知れません。
これは彼らのアウト・オブ・ディストリビューション(OOD)と敵の堅牢性を著しく損なう。
論文 参考訳(メタデータ) (2022-08-25T03:51:39Z) - Pile of Law: Learning Responsible Data Filtering from the Law and a
256GB Open-Source Legal Dataset [46.156169284961045]
我々は, フィルター材料におけるトレードオフに直接対処する法則に基づくフィルタリングへのアプローチを提案する。
まず、256GBのオープンソース英語および行政データのデータセットであるPile of Lawを収集、利用可能にします。
第二に、政府が有毒または私的コンテンツを含めることを規制するために開発した法規範を精査する。
第3に、Pile of Lawが研究者に、このようなフィルタリングルールを直接データから学習する機会を提供する方法を示します。
論文 参考訳(メタデータ) (2022-07-01T06:25:15Z) - A Survey on Legal Judgment Prediction: Datasets, Metrics, Models and
Challenges [73.34944216896837]
法定判断予測(LJP)は,事実記述に基づく判断結果の自動予測に自然言語処理(NLP)技術を適用している。
6言語で31のLJPデータセットを分析し、その構築過程を示し、LJPの分類方法を定義する。
異なる訴訟の8つの代表的データセットに対する最先端の結果を示し、オープンな課題について議論する。
論文 参考訳(メタデータ) (2022-04-11T04:06:28Z) - LexGLUE: A Benchmark Dataset for Legal Language Understanding in English [15.026117429782996]
我々は,多種多様なNLUタスクのモデル性能を評価するためのデータセットの集合であるLexGLUEベンチマークを紹介する。
また、複数の汎用的および法的指向モデルの評価と分析を行い、後者が複数のタスクにまたがるパフォーマンス改善を一貫して提供することを示した。
論文 参考訳(メタデータ) (2021-10-03T10:50:51Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z) - On the Ethical Limits of Natural Language Processing on Legal Text [9.147707153504117]
自然言語処理システムの使用に対する倫理的限界を特定する上で、研究者は苦戦していると論じている。
我々は、現在の議論によって過小評価された3つの重要な規範的パラメータに重点を置く。
これら3つのパラメータのそれぞれについて、法的NLPコミュニティに具体的な推奨事項を提供します。
論文 参考訳(メタデータ) (2021-05-06T15:22:24Z) - Authorized and Unauthorized Practices of Law: The Role of Autonomous
Levels of AI Legal Reasoning [0.0]
法分野は、認可された法律実務(APL)と無認可の法律実務(UPL)を定義することを目指している。
本稿では,AILR自律レベルに適用する上で,APLとUPLの基盤となる重要な特徴を記述した新たなインスツルメンタルグリッドについて検討する。
論文 参考訳(メタデータ) (2020-08-19T18:35:58Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
法律人工知能(Legal AI)は、人工知能、特に自然言語処理の技術を適用して、法的領域におけるタスクに役立てることに焦点を当てている。
本稿では,LegalAIにおける研究の歴史,現状,今後の方向性について紹介する。
論文 参考訳(メタデータ) (2020-04-25T14:45:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。