論文の概要: Bayesian Models for Joint Selection of Features and Auto-Regressive Lags: Theory and Applications in Environmental and Financial Forecasting
- arxiv url: http://arxiv.org/abs/2508.10055v1
- Date: Tue, 12 Aug 2025 18:44:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-15 22:24:48.055385
- Title: Bayesian Models for Joint Selection of Features and Auto-Regressive Lags: Theory and Applications in Environmental and Financial Forecasting
- Title(参考訳): 特徴と自己回帰ラグの連成選択のためのベイズモデル:環境・財務予測における理論と応用
- Authors: Alokesh Manna, Sujit K. Ghosh,
- Abstract要約: 自動相関誤差を伴う線形回帰における変数選択のためのベイズ的フレームワークを開発する。
本フレームワークは,MSPEの低減,真のモデル成分同定の改善,自動相関ノイズとの整合性の向上を実現している。
既存の手法と比較して,本フレームワークはより低いMSPEを実現し,真のモデル成分の同定が向上し,自動相関ノイズとの整合性が向上する。
- 参考スコア(独自算出の注目度): 0.9208007322096533
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We develop a Bayesian framework for variable selection in linear regression with autocorrelated errors, accommodating lagged covariates and autoregressive structures. This setting occurs in time series applications where responses depend on contemporaneous or past explanatory variables and persistent stochastic shocks, including financial modeling, hydrological forecasting, and meteorological applications requiring temporal dependency capture. Our methodology uses hierarchical Bayesian models with spike-and-slab priors to simultaneously select relevant covariates and lagged error terms. We propose an efficient two-stage MCMC algorithm separating sampling of variable inclusion indicators and model parameters to address high-dimensional computational challenges. Theoretical analysis establishes posterior selection consistency under mild conditions, even when candidate predictors grow exponentially with sample size, common in modern time series with many potential lagged variables. Through simulations and real applications (groundwater depth prediction, S&P 500 log returns modeling), we demonstrate substantial gains in variable selection accuracy and predictive performance. Compared to existing methods, our framework achieves lower MSPE, improved true model component identification, and greater robustness with autocorrelated noise, underscoring practical utility for model interpretation and forecasting in autoregressive settings.
- Abstract(参考訳): 線形回帰の変分選択のためのベイズ的枠組みを, 自己相関誤差, ラベル付き共変量, 自己回帰構造を用いて開発する。
この設定は、同時または過去の説明変数や、金融モデリング、水文予測、時間的依存性のキャプチャを必要とする気象学アプリケーションなど、持続的な確率的ショックに依存する時系列アプリケーションで発生する。
提案手法はスパイク・アンド・スラブ前の階層的ベイズモデルを用いて,関連する共変量とラベル付き誤り項を同時に選択する。
本稿では,高次元計算問題に対処するため,変数包摂指標とモデルパラメータのサンプリングを分離した2段階MCMCアルゴリズムを提案する。
理論的解析は、候補予測器がサンプルサイズで指数関数的に成長しても、穏やかな条件下で後続選択整合性を確立する。
シミュレーションと実応用(地下水深度予測,S&P 500ログリターンモデリング)により,変数選択精度と予測性能が著しく向上したことを示す。
従来の手法と比較して,本フレームワークはより低いMSPEを実現し,真のモデルコンポーネント同定を向上し,自己相関ノイズによるロバスト性を高め,自己回帰設定におけるモデル解釈と予測の実用性を実証する。
関連論文リスト
- Spatial Reasoning with Denoising Models [49.83744014336816]
本稿では,連続変数の集合に対する推論を行うためのフレームワークを提案する。
初めて、その生成順序をデノナイジングネットワーク自体によって予測できる。
これらの結果から,特定の推論タスクの精度を1%から50%に向上させることができる。
論文 参考訳(メタデータ) (2025-02-28T14:08:30Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
本稿では,実世界のデータでしばしば発生する課題に対処するために,時系列計算と予測のための新しいモデリング手法を提案する。
本手法はシリーズの進化力学の連続時間依存モデルに依存する。
メタラーニングアルゴリズムによって駆動される変調機構は、観測されたタイムウインドウを超えて、見えないサンプルや外挿への適応を可能にする。
論文 参考訳(メタデータ) (2023-06-09T13:20:04Z) - Simultaneously Reconciled Quantile Forecasting of Hierarchically Related
Time Series [11.004159006784977]
本稿では,階層間の予測の整合性を維持するために,量子レグレッション損失を最適化するフレキシブル非線形モデルを提案する。
ここで導入された理論的枠組みは、下層の微分可微分損失関数を持つ任意の予測モデルに適用できる。
論文 参考訳(メタデータ) (2021-02-25T00:59:01Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Deep Switching Auto-Regressive Factorization:Application to Time Series
Forecasting [16.934920617960085]
DSARFは、時間依存重みと空間依存因子の間の積変数による高次元データを近似する。
DSARFは、深い切替ベクトル自己回帰因子化の観点から重みをパラメータ化するという最先端技術とは異なる。
本実験は, 最先端手法と比較して, DSARFの長期的, 短期的予測誤差において優れた性能を示すものである。
論文 参考訳(メタデータ) (2020-09-10T20:15:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。