論文の概要: Towards Agentic AI for Multimodal-Guided Video Object Segmentation
- arxiv url: http://arxiv.org/abs/2508.10572v1
- Date: Thu, 14 Aug 2025 12:11:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-15 22:24:48.302316
- Title: Towards Agentic AI for Multimodal-Guided Video Object Segmentation
- Title(参考訳): マルチモーダル誘導ビデオオブジェクトセグメンテーションのためのエージェントAIを目指して
- Authors: Tuyen Tran, Thao Minh Le, Truyen Tran,
- Abstract要約: 参照ベースのビデオオブジェクトは、外部キューでガイドされたきめ細かいセグメンテーション結果を生成する必要のあるマルチモーダル問題である。
ビジョン言語基礎モデルの最近の進歩は、トレーニングフリーアプローチへの有望な方向性を開いている。
本稿では,この課題を柔軟かつ適応的に解決する新しいエージェントシステムであるMulti-Modal Agentを提案する。
- 参考スコア(独自算出の注目度): 14.877182670778284
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Referring-based Video Object Segmentation is a multimodal problem that requires producing fine-grained segmentation results guided by external cues. Traditional approaches to this task typically involve training specialized models, which come with high computational complexity and manual annotation effort. Recent advances in vision-language foundation models open a promising direction toward training-free approaches. Several studies have explored leveraging these general-purpose models for fine-grained segmentation, achieving performance comparable to that of fully supervised, task-specific models. However, existing methods rely on fixed pipelines that lack the flexibility needed to adapt to the dynamic nature of the task. To address this limitation, we propose Multi-Modal Agent, a novel agentic system designed to solve this task in a more flexible and adaptive manner. Specifically, our method leverages the reasoning capabilities of large language models (LLMs) to generate dynamic workflows tailored to each input. This adaptive procedure iteratively interacts with a set of specialized tools designed for low-level tasks across different modalities to identify the target object described by the multimodal cues. Our agentic approach demonstrates clear improvements over prior methods on two multimodal-conditioned VOS tasks: RVOS and Ref-AVS.
- Abstract(参考訳): 参照ベースのビデオオブジェクトセグメンテーションは、外部キューでガイドされたきめ細かいセグメンテーション結果を生成する必要があるマルチモーダル問題である。
このタスクに対する従来のアプローチは、通常、高い計算複雑性と手動のアノテーションを伴う特別なモデルを訓練する。
ビジョン言語基礎モデルの最近の進歩は、トレーニングフリーアプローチへの有望な方向性を開く。
いくつかの研究は、これらの汎用モデルをきめ細かなセグメンテーションに活用し、完全な教師付きタスク固有モデルに匹敵する性能を達成することを研究してきた。
しかし、既存のメソッドは、タスクの動的な性質に適応するために必要な柔軟性に欠ける固定パイプラインに依存している。
この制限に対処するために、より柔軟で適応的な方法でこの課題を解決するために設計された新しいエージェントシステムであるMulti-Modal Agentを提案する。
具体的には,大規模言語モデル(LLM)の推論機能を活用し,各入力に適した動的ワークフローを生成する。
この適応的な手順は、異なるモダリティをまたいだ低レベルタスク用に設計された一連の特殊ツールと反復的に相互作用し、マルチモーダルキューによって記述された対象物を特定する。
我々のエージェント的アプローチは、RVOSとRef-AVSの2つのマルチモーダル条件付きVOSタスクにおいて、以前の方法よりも明らかに改善されていることを示す。
関連論文リスト
- Model Evolution Framework with Genetic Algorithm for Multi-Task Reinforcement Learning [85.91908329457081]
マルチタスク強化学習は、様々なシナリオにまたがって一般化可能なエージェントを開発することを目的として、様々なタスクを完遂するために単一のポリシーを採用する。
既存のアプローチでは、ルーティングネットワークを使用して各タスクの特定のルートを生成し、モジュールのセットをさまざまなモデルに再構築し、複数のタスクを同時に完了させるのが一般的である。
本稿では,遺伝的アルゴリズム(MEGA)を用いたモデル進化フレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-19T09:22:34Z) - Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
生成的トレーニングにより、視覚言語モデル(VLM)は様々な複雑なタスクに取り組むことができる。
CLIPのようなモデルで実証された差別的トレーニングは、ゼロショットイメージテキストの分類と検索に優れています。
本稿では,両パラダイムの強みを統合する統一的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-01T01:51:31Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) は、異なるモデルに転送可能な視覚的プロンプトを生成するためのシンプルで効果的なアプローチである。
本稿では,既存の視覚的プロンプト手法のクロスモデル特徴劣化問題に対処し,学習したプロンプトの伝達可能性を高めるための2つの戦略を提案する。
論文 参考訳(メタデータ) (2024-04-17T09:39:07Z) - Meta-Task Prompting Elicits Embeddings from Large Language Models [54.757445048329735]
本稿では,新しい教師なしテキスト埋め込み手法であるMeta-Task Prompting with Explicit One-Word Limitationを紹介する。
モデル微調整を必要とせずに,大規模言語モデルから高品質な文埋め込みを生成する。
提案法は,多種多様なシナリオにまたがって生成を組み込む汎用的で資源効率のよい手法を提供する。
論文 参考訳(メタデータ) (2024-02-28T16:35:52Z) - Towards Unified Task Embeddings Across Multiple Models: Bridging the Gap for Prompt-Based Large Language Models and Beyond [16.913115978881866]
本稿では,単一ベクトル空間内において,より小さな言語モデルや多様なプロンプトを持つ大規模言語モデルを含む,様々なモデルからのタスク埋め込みである統合タスク埋め込み(FUTE)フレームワークを提案する。
このような一様性は、異なるモデル間の類似性の比較と分析を可能にし、マルチモデルシナリオにおける既存のタスク埋め込みメソッドの範囲と有用性を広げる。
論文 参考訳(メタデータ) (2024-02-22T13:13:31Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Towards Robust Multi-Modal Reasoning via Model Selection [7.6621866737827045]
LLMはエージェントの"脳"として機能し、協調的な多段階タスク解決のための複数のツールを編成する。
我々はテスト時に無視できるランタイムオーバーヘッドを持つプラグインとして、$textitM3$フレームワークを提案する。
実験の結果,我々のフレームワークは,ユーザ入力とサブタスク依存の両方を考慮した動的モデル選択を可能にすることがわかった。
論文 参考訳(メタデータ) (2023-10-12T16:06:18Z) - OFASys: A Multi-Modal Multi-Task Learning System for Building Generalist
Models [72.8156832931841]
ジェネリストモデルは、単一のモデル内でタスクに依存しない方法で多様なマルチモーダルタスクを実行することができる。
マルチモーダル命令と呼ばれる宣言型タスクインタフェース上に構築された汎用モデル学習システムOFASysをリリースする。
論文 参考訳(メタデータ) (2022-12-08T17:07:09Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
本稿では,3つの下流タスクにおけるMoCoやSimCLRなど,多種多様な自己監督手法の転送性能について検討する。
彼らのパフォーマンスは、サブ最適か、あるいはシングルタスクベースラインよりもはるかに遅れていることに気付きました。
汎用マルチタスクトレーニングのための,単純かつ効果的な事前訓練-適応-ファインチューンパラダイムを提案する。
論文 参考訳(メタデータ) (2022-09-19T12:15:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。