論文の概要: From Promise to Practical Reality: Transforming Diffusion MRI Analysis with Fast Deep Learning Enhancement
- arxiv url: http://arxiv.org/abs/2508.10950v1
- Date: Wed, 13 Aug 2025 17:56:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-18 14:51:23.606038
- Title: From Promise to Practical Reality: Transforming Diffusion MRI Analysis with Fast Deep Learning Enhancement
- Title(参考訳): Promiseから実践的現実へ:高速深層学習による拡散MRI解析
- Authors: Xinyi Wang, Michael Barnett, Frederique Boonstra, Yael Barnett, Mariano Cabezas, Arkiev D'Souza, Matthew C. Kiernan, Kain Kyle, Meng Law, Lynette Masters, Zihao Tang, Stephen Tisch, Sicong Tu, Anneke Van Der Walt, Dongang Wang, Fernando Calamante, Weidong Cai, Chenyu Wang,
- Abstract要約: FastFOD-Netは、FODを優れたパフォーマンスで強化し、臨床使用のためのトレーニング/推論効率を提供するエンドツーエンドのディープラーニングフレームワークである。
この研究は、拡散MRIの強化のための深層学習に基づく手法を、より広く採用し、臨床信頼を構築することを促進する。
- 参考スコア(独自算出の注目度): 55.64033992736822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fiber orientation distribution (FOD) is an advanced diffusion MRI modeling technique that represents complex white matter fiber configurations, and a key step for subsequent brain tractography and connectome analysis. Its reliability and accuracy, however, heavily rely on the quality of the MRI acquisition and the subsequent estimation of the FODs at each voxel. Generating reliable FODs from widely available clinical protocols with single-shell and low-angular-resolution acquisitions remains challenging but could potentially be addressed with recent advances in deep learning-based enhancement techniques. Despite advancements, existing methods have predominantly been assessed on healthy subjects, which have proved to be a major hurdle for their clinical adoption. In this work, we validate a newly optimized enhancement framework, FastFOD-Net, across healthy controls and six neurological disorders. This accelerated end-to-end deep learning framework enhancing FODs with superior performance and delivering training/inference efficiency for clinical use ($60\times$ faster comparing to its predecessor). With the most comprehensive clinical evaluation to date, our work demonstrates the potential of FastFOD-Net in accelerating clinical neuroscience research, empowering diffusion MRI analysis for disease differentiation, improving interpretability in connectome applications, and reducing measurement errors to lower sample size requirements. Critically, this work will facilitate the more widespread adoption of, and build clinical trust in, deep learning based methods for diffusion MRI enhancement. Specifically, FastFOD-Net enables robust analysis of real-world, clinical diffusion MRI data, comparable to that achievable with high-quality research acquisitions.
- Abstract(参考訳): 繊維配向分布(英: Fiber orientation distribution,FOD)は、複雑な白色物質繊維の配置を表す高度な拡散MRIモデリング技術であり、その後の脳のトラクトグラフィーとコネクトーム解析の鍵となるステップである。
しかし、その信頼性と精度は、MRI取得の品質と、それに続く各ボクセルでのFODの推定に大きく依存している。
シングルシェルと低解像度の取得によって、広く利用可能な臨床プロトコルから信頼性の高いFODを生成することは、依然として困難であるが、ディープラーニングベースの強化技術の最近の進歩に対処する可能性がある。
進歩にもかかわらず、既存の方法は主に健康な被験者で評価されており、臨床導入の大きなハードルであることが証明されている。
本研究では、健康なコントロールと6つの神経疾患にまたがって、新しい最適化された拡張フレームワークであるFastFOD-Netを検証する。
このエンドツーエンドのディープラーニングフレームワークは、優れたパフォーマンスでFODを強化し、臨床使用のためのトレーニング/推論効率を提供する(前者と比較して60\times$ faster)。
これまでで最も包括的な臨床評価を行った結果,FastFOD-Netが臨床神経科学研究を加速する可能性,疾患分化のための拡散MRI解析の強化,コネクトームの応用における解釈可能性の向上,測定誤差の低減,サンプルサイズ要件の低減に寄与した。
批判的なことに、この研究はより広く採用され、より深層学習に基づく拡散MRIの強化のための臨床信頼の構築を促進する。
特に、FastFOD-Netは、高品質な研究買収で達成できるような、実世界の臨床拡散MRIデータの堅牢な分析を可能にする。
関連論文リスト
- NeuroMoE: A Transformer-Based Mixture-of-Experts Framework for Multi-Modal Neurological Disorder Classification [3.5313393560458826]
Deep Learningは最近、診断を助けるために医療データから意味のあるパターンを抽出する強力なツールとして登場した。
神経疾患を分類するための新しいトランスフォーマーベースのMixture-of-Experts(MoE)フレームワークを提案する。
我々のフレームワークは82.47%の検証精度を達成し、ベースライン法を10%以上上回っている。
論文 参考訳(メタデータ) (2025-06-17T20:40:06Z) - Towards a general-purpose foundation model for fMRI analysis [58.06455456423138]
我々は,4次元fMRIボリュームから学習し,多様なアプリケーション間で効率的な知識伝達を可能にするフレームワークであるNeuroSTORMを紹介する。
NeuroSTORMは、複数のセンターにまたがる5万人以上の被験者から5歳から100歳までの28.65万fMRIフレーム(→9000時間)で事前トレーニングされている。
年齢/性別予測、表現型予測、疾患診断、fMRI-to-image検索、タスクベースのfMRIの5つのタスクにおいて、既存の手法よりも優れています。
論文 参考訳(メタデータ) (2025-06-11T23:51:01Z) - Equivariant Spherical CNNs for Accurate Fiber Orientation Distribution Estimation in Neonatal Diffusion MRI with Reduced Acquisition Time [1.675857332621569]
新生児dMRIに適した回転同変球状畳み込みニューラルネットワーク(SCNN)フレームワークを提案する。
我々は、43の新生児dMRIデータセットから得られた実データを用いて、sCNNの性能を訓練し、評価する。
論文 参考訳(メタデータ) (2025-04-02T17:36:51Z) - Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
拡散強調画像(DWI)は、水分子の拡散率に感応した磁気共鳴イメージング(MRI)の一種である。
本研究はDirGeo-DTIを提案する。DirGeo-DTIは、勾配方向の最小理論数(6)で得られたDWIの集合からでも、信頼できるDTIメトリクスを推定する深層学習に基づく手法である。
論文 参考訳(メタデータ) (2024-09-11T11:12:26Z) - DDEvENet: Evidence-based Ensemble Learning for Uncertainty-aware Brain Parcellation Using Diffusion MRI [5.757390718589337]
EVENetは、拡散MRIを用いた解剖学的脳解析のためのエビデンスベースのエンサンブルニューラルネットワークである。
健常層および臨床集団の異なるデータセットの正確なパーセレーションと不確実性の推定値を得た。
この不確実性評価により,EVENet法は病変症例の異常脳領域の検出に有効であることが示された。
論文 参考訳(メタデータ) (2024-09-11T05:26:23Z) - Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
分散トレーニングは、大規模な医用画像データセットの処理を容易にし、疾患診断の精度と効率を向上させる。
本稿では,データプライバシと効率的な疾患診断という2つの課題に対処するために,Federated Learning(FL)を活用した医用画像分類の革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-15T09:07:19Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
マルチモーダルICUデータを用いて病院内死亡率を予測するための,効率的で説明可能なAIソリューションを提案する。
我々は,臨床データから異種入力を受信し,意思決定を行うマルチモーダル・ラーニングを我々のフレームワークに導入する。
我々の枠組みは、医療研究において重要な要素の発見を容易にする他の臨床課題に容易に移行することができる。
論文 参考訳(メタデータ) (2023-12-29T14:28:04Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Towards learned optimal q-space sampling in diffusion MRI [1.5640063295947522]
ファイバトラクトグラフィーのための統一的な推定フレームワークを提案する。
提案手法は,信号推定の精度とそれに続く解析精度を大幅に向上させる。
本稿では,Human Connectome Projectデータに基づく包括的比較分析を提案する。
論文 参考訳(メタデータ) (2020-09-07T10:46:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。