論文の概要: Predicting and Explaining Traffic Crash Severity Through Crash Feature Selection
- arxiv url: http://arxiv.org/abs/2508.11504v1
- Date: Fri, 15 Aug 2025 14:31:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-18 14:51:24.049342
- Title: Predicting and Explaining Traffic Crash Severity Through Crash Feature Selection
- Title(参考訳): クラッシュ特徴選択による交通事故の重大度予測と説明
- Authors: Andrea Castellani, Zacharias Papadovasilakis, Giorgos Papoutsoglou, Mary Cole, Brian Bautsch, Tobias Rodemann, Ioannis Tsamardinos, Angela Harden,
- Abstract要約: この研究は、オハイオ州で6~2022年に起きた事故に300万人以上の人が関わったデータセットを紹介します。
主な貢献は、自動機械学習(AutoML)と説明可能な人工知能(AI)を組み合わせて、深刻なクラッシュに関連する主要なリスク要因を特定し、解釈する、透過的で再現可能な方法論である。
主な特徴は、人口統計、環境、車両、人的および運用上のカテゴリーで、位置タイプや投稿速度、居住年齢の最小化、クレーシュ前の行動などが含まれる。
- 参考スコア(独自算出の注目度): 1.0941365324532635
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motor vehicle crashes remain a leading cause of injury and death worldwide, necessitating data-driven approaches to understand and mitigate crash severity. This study introduces a curated dataset of more than 3 million people involved in accidents in Ohio over six years (2017-2022), aggregated to more than 2.3 million vehicle-level records for predictive analysis. The primary contribution is a transparent and reproducible methodology that combines Automated Machine Learning (AutoML) and explainable artificial intelligence (AI) to identify and interpret key risk factors associated with severe crashes. Using the JADBio AutoML platform, predictive models were constructed to distinguish between severe and non-severe crash outcomes. The models underwent rigorous feature selection across stratified training subsets, and their outputs were interpreted using SHapley Additive exPlanations (SHAP) to quantify the contribution of individual features. A final Ridge Logistic Regression model achieved an AUC-ROC of 85.6% on the training set and 84.9% on a hold-out test set, with 17 features consistently identified as the most influential predictors. Key features spanned demographic, environmental, vehicle, human, and operational categories, including location type, posted speed, minimum occupant age, and pre-crash action. Notably, certain traditionally emphasized factors, such as alcohol or drug impairment, were less influential in the final model compared to environmental and contextual variables. Emphasizing methodological rigor and interpretability over mere predictive performance, this study offers a scalable framework to support Vision Zero with aligned interventions and advanced data-informed traffic safety policy.
- Abstract(参考訳): 自動車事故は、事故の重大さを理解し、緩和するためにデータ駆動のアプローチを必要とする、世界規模の負傷と死亡の主な原因であり続けている。
この研究は6年間(2017-2022年)にオハイオ州で事故に遭った300万人以上のデータを収集し、予測分析のために230万件以上の車両レベルの記録を集計した。
主な貢献は、自動機械学習(AutoML)と説明可能な人工知能(AI)を組み合わせて、深刻なクラッシュに関連する主要なリスク要因を特定し、解釈する、透過的で再現可能な方法論である。
JADBio AutoMLプラットフォームを使用して、重大と重大でないクラッシュの結果を区別するために予測モデルを構築した。
モデルは階層化されたトレーニングサブセット間で厳密な特徴選択を行い、その出力はSHAP(SHapley Additive ExPlanations)を用いて個々の特徴の寄与を定量化した。
最後のリッジロジスティック回帰モデルでは、トレーニングセットで85.6%、ホールドアウトテストセットで84.9%のAUC-ROCを達成した。
主な特徴は、人口統計、環境、車両、人間、および運用カテゴリーにまたがっており、位置タイプ、投稿速度、居住年齢の最小化、クラッシュ前の行動が含まれる。
特に、アルコールや薬物障害などの伝統的に強調された要因は、環境変数や文脈変数と比較して最終モデルにはあまり影響しなかった。
本研究は,単なる予測性能よりも方法論的厳密さと解釈可能性を重視し,協調的な介入と高度なデータインフォームド交通安全ポリシーでビジョンゼロをサポートするスケーラブルなフレームワークを提供する。
関連論文リスト
- Overtake Detection in Trucks Using CAN Bus Signals: A Comparative Study of Machine Learning Methods [51.28632782308621]
ボルボグループが提供する5台の車載トラックから収集した制御エリアネットワーク(CAN)バスデータを用いたオーバーテイク検出に焦点を当てた。
車両操作検出、ニューラルネットワーク(ANN)、ランダムフォレスト(RF)、サポートベクトルマシン(SVM)の3つの共通分類器の評価を行った。
当社のパートラック分析では、特にオーバーテイクにおいて、車両毎のトレーニングデータの量に依存する分類精度も明らかにしています。
論文 参考訳(メタデータ) (2025-07-01T09:20:41Z) - Advanced Crash Causation Analysis for Freeway Safety: A Large Language Model Approach to Identifying Key Contributing Factors [0.0]
本研究は,大規模言語モデル(LLM)を利用して高速道路の事故データを解析し,それに応じて事故原因分析を行う。
微調整されたLlama3 8Bモデルは、ゼロショット分類によって事前にラベル付けされたデータなしでクラッシュ因果を識別するために使用された。
その結果, LLMはアルコール欠乏運転, スピード, 積極的運転, 運転不注意などの事故原因を効果的に同定できることが示唆された。
論文 参考訳(メタデータ) (2025-05-15T04:07:55Z) - NsBM-GAT: A Non-stationary Block Maximum and Graph Attention Framework for General Traffic Crash Risk Prediction [11.444259609536164]
既存の衝突リスク予測モデルは、研究者が危険とみなす仮説上のシナリオに依存している。
ダッシュカムビデオは、個々の車のクレーシュ前動作を撮影するが、周囲の車両の動きに関する重要な情報を欠いていることが多い。
本研究では,車両とその周辺車両間の対話的挙動を捉えるために,新しい非定常極値理論(EVT)を提案する。
論文 参考訳(メタデータ) (2025-03-06T02:12:40Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
安全な運転プラクティスを再現する自律システムを開発するためには、人間のデータを分析することが不可欠だ。
本稿では,複数の軌道予測データセットにおける交通・安全規則の適合性の比較評価を行う。
論文 参考訳(メタデータ) (2024-11-04T09:21:00Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
我々は,CrashEventという大規模トラフィッククラッシュ言語データセットを提案し,実世界のクラッシュレポート19,340を要約した。
さらに,クラッシュイベントの特徴学習を,新たなテキスト推論問題として定式化し,さらに様々な大規模言語モデル(LLM)を微調整して,詳細な事故結果を予測する。
実験の結果, LLMに基づくアプローチは事故の重大度を予測できるだけでなく, 事故の種類を分類し, 損害を予測できることがわかった。
論文 参考訳(メタデータ) (2024-06-16T03:10:16Z) - Exploring the Determinants of Pedestrian Crash Severity Using an AutoML Approach [0.0]
この研究は、さまざまな説明変数がクラッシュ結果に与える影響を評価するためにAutoMLを使用している。
この研究は、予測モデルにおける個々の特徴の寄与を解釈するために、SHAP(SHapley Additive exPlanations)を組み込んだ。
論文 参考訳(メタデータ) (2024-06-07T22:02:36Z) - DRUformer: Enhancing the driving scene Important object detection with
driving relationship self-understanding [50.81809690183755]
交通事故はしばしば致命傷を負い、2023年まで5000万人以上の死者を出した。
従来の研究は、主に個々の参加者の重要性を評価し、それらを独立した存在として扱うものであった。
本稿では、重要な物体検出タスクを強化するために、運転シーン関連自己理解変換器(DRUformer)を紹介する。
論文 参考訳(メタデータ) (2023-11-11T07:26:47Z) - Enhancing Prediction and Analysis of UK Road Traffic Accident Severity
Using AI: Integration of Machine Learning, Econometric Techniques, and Time
Series Forecasting in Public Health Research [0.0]
本研究は, 機械学習, エコノメトリ, 統計的手法を組み合わせて, 英国における交通事故の重大度を調査した。
MASEは0.800、MEは-73.80である。
論文 参考訳(メタデータ) (2023-09-23T21:46:43Z) - Causal Analysis and Classification of Traffic Crash Injury Severity
Using Machine Learning Algorithms [0.0]
この調査で使用されたデータは、2014年から2019年までの6年間にテキサス州のすべての州間高速道路で交通事故が発生した際に得られたものです。
提案手法は,致命的・重傷(KA),非重傷(BC),財産被害(PDO)の3つのクラスを含む。
Grangerの因果関係分析の結果、速度制限、表面および気象条件、交通量、ワークゾーンの存在、ワークゾーンの労働者、高占有車線(HOV)が事故の深刻度に影響を及ぼす最も重要な要因として特定された。
論文 参考訳(メタデータ) (2021-11-30T20:32:31Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
道路交通事故予測におけるデータ不足の根本的な課題を、事故の代わりに緊急ブレーキイベントをトレーニングすることで解決します。
メルセデス・ベンツ車両の緊急ブレーキデータに基づくドイツにおける交通事故予測モデルを実装したプロトタイプを提案する。
論文 参考訳(メタデータ) (2021-02-12T18:17:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。