論文の概要: DEEP-SEA: Deep-Learning Enhancement for Environmental Perception in Submerged Aquatics
- arxiv url: http://arxiv.org/abs/2508.12824v1
- Date: Mon, 18 Aug 2025 11:07:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:11.256084
- Title: DEEP-SEA: Deep-Learning Enhancement for Environmental Perception in Submerged Aquatics
- Title(参考訳): DEEP-SEA:潜水水中環境認識の深層学習向上
- Authors: Shuang Chen, Ronald Thenius, Farshad Arvin, Amir Atapour-Abarghouei,
- Abstract要約: 継続的で信頼性の高い水中モニタリングは、海洋生物多様性の評価、生態学的変化の検出、自律探査に不可欠である。
水中環境は、光散乱、吸収、濁度により、画像の明瞭度を低下させ、色情報を歪ませることによる重要な課題を呈している。
空間構造を保存しながら低周波情報と高周波情報を両立させる深層学習に基づく水中画像復元モデルDEEP-SEAを提案する。
- 参考スコア(独自算出の注目度): 5.543187582839764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuous and reliable underwater monitoring is essential for assessing marine biodiversity, detecting ecological changes and supporting autonomous exploration in aquatic environments. Underwater monitoring platforms rely on mainly visual data for marine biodiversity analysis, ecological assessment and autonomous exploration. However, underwater environments present significant challenges due to light scattering, absorption and turbidity, which degrade image clarity and distort colour information, which makes accurate observation difficult. To address these challenges, we propose DEEP-SEA, a novel deep learning-based underwater image restoration model to enhance both low- and high-frequency information while preserving spatial structures. The proposed Dual-Frequency Enhanced Self-Attention Spatial and Frequency Modulator aims to adaptively refine feature representations in frequency domains and simultaneously spatial information for better structural preservation. Our comprehensive experiments on EUVP and LSUI datasets demonstrate the superiority over the state of the art in restoring fine-grained image detail and structural consistency. By effectively mitigating underwater visual degradation, DEEP-SEA has the potential to improve the reliability of underwater monitoring platforms for more accurate ecological observation, species identification and autonomous navigation.
- Abstract(参考訳): 海洋生物多様性を評価し、生態系の変化を検出し、水生環境における自律的な探査を支援するためには、継続的で信頼性の高い水中モニタリングが不可欠である。
水中モニタリングプラットフォームは、主に海洋生物多様性分析、生態学的評価、自律探査のための視覚データに依存している。
しかし、水中環境は、光散乱、吸収、濁度によって画像の明瞭度を低下させ、色情報を歪ませ、正確な観察を困難にしている。
これらの課題に対処するために,空間構造を保存しながら低周波情報と高周波情報を両立させる深層学習に基づく水中画像復元モデルDEEP-SEAを提案する。
提案手法は,周波数領域における特徴表現を適応的に洗練し,同時に空間情報を付加して構造保存を改善することを目的としている。
EUVPとLSUIデータセットに関する包括的な実験は、きめ細かい画像の詳細と構造的な一貫性を回復する上で、最先端よりも優れていることを示す。
水中の視覚劣化を効果的に緩和することにより、DEEP-SEAはより正確な生態観測、種識別、自律的なナビゲーションのために水中監視プラットフォームの信頼性を向上させる可能性がある。
関連論文リスト
- Learning Underwater Active Perception in Simulation [51.205673783866146]
タービディティは、検査された構造物の正確な視覚的記録を阻止する可能性があるため、ミッション全体を危険に晒す可能性がある。
従来の研究は、濁度や後方散乱に適応する手法を導入してきた。
本研究では, 広範囲の水環境下での高品質な画像取得を実現するための, 単純かつ効率的なアプローチを提案する。
論文 参考訳(メタデータ) (2025-04-23T06:48:38Z) - Identifying Trustworthiness Challenges in Deep Learning Models for Continental-Scale Water Quality Prediction [64.4881275941927]
本稿では,大陸規模のマルチタスクLSTMモデルにおいて,信頼性の総合評価を行う。
本研究は,流域特性に関連するモデル性能格差の系統的パターンを明らかにする。
この作業は、水資源管理のための信頼できるデータ駆動手法を前進させるためのタイムリーな呼びかけとして役立ちます。
論文 参考訳(メタデータ) (2025-03-13T01:50:50Z) - Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
本稿では,視覚的位置認識(VPR),特徴マッチング,画像分割を組み合わせた統合パイプラインを提案する。
本手法は, 再検討領域のロバスト同定, 剛性変換の推定, 生態系変化の下流解析を可能にする。
論文 参考訳(メタデータ) (2025-03-06T05:13:19Z) - SeagrassFinder: Deep Learning for Eelgrass Detection and Coverage Estimation in the Wild [1.0617118349563253]
海草の草原は海洋生態系において重要な役割を担い、炭素の隔離、水質改善、生息地確保などの利益を提供している。
海底映像データを解析して海草被覆度を評価する現在の手作業は、時間と主観的である。
本研究では,海底ビデオデータから海草の検出とカバレッジ推定のプロセスを自動化するためのディープラーニングモデルについて検討する。
論文 参考訳(メタデータ) (2024-12-20T18:50:54Z) - FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation [65.01601309903971]
無人水中車両(UUV)の6次元ポーズ推定のための周波数認識フロー支援フレームワークであるFAFAを紹介する。
我々のフレームワークは、3DモデルとRGB画像のみに依存しており、実際のポーズアノテーションや奥行きのような非モダリティデータの必要性を軽減しています。
本研究では,一般的な水中オブジェクトポーズベンチマークにおけるFAFAの有効性を評価し,最先端手法と比較して顕著な性能向上を示した。
論文 参考訳(メタデータ) (2024-09-25T03:54:01Z) - Deep Learning Innovations for Underwater Waste Detection: An In-Depth Analysis [0.0]
本稿では, 埋立廃棄物処理とごみ処理の基盤となるため, 最先端のアーキテクチャと既存のデータセットを網羅的に検討する。
第一の目的は、高度な水中センサーと自律型水中車両によって活用される物体の局所化手法のベンチマークを確立することである。
論文 参考訳(メタデータ) (2024-05-28T15:51:18Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
トレーニングフェーズ中に手動アノテーションを不要にする自己教師型ディープラーニングモデルであるDeepAquaを提案する。
我々は、光とレーダーをベースとしたウォーターマスクが一致する場合を利用して、水面と植物の両方を検知する。
実験の結果,DeepAquaの精度は7%向上し,Intersection Over Unionが27%,F1が14%向上した。
論文 参考訳(メタデータ) (2023-05-02T18:06:21Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
有害な藻類(HAB)は養殖農場で重大な魚死を引き起こす。
現在、有害藻や他の植物プランクトンを列挙する標準的な方法は、顕微鏡でそれらを手動で観察し数えることである。
合成画像の生成にはGAN(Generative Adversarial Networks)を用いる。
論文 参考訳(メタデータ) (2022-08-03T20:15:55Z) - A Novel Underwater Image Enhancement and Improved Underwater Biological
Detection Pipeline [8.326477369707122]
本稿では, YOLOv5 バックボーンに畳み込みブロックアテンションモジュール (CBAM) を付加した特徴情報を取得する手法を提案する。
物体特性に対する水中生物特性の干渉が減少し、対象情報に対するバックボーンネットワークの出力が向上する。
論文 参考訳(メタデータ) (2022-05-20T14:18:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。