論文の概要: Smooth Flow Matching
- arxiv url: http://arxiv.org/abs/2508.13831v1
- Date: Tue, 19 Aug 2025 13:50:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 15:36:31.941038
- Title: Smooth Flow Matching
- Title(参考訳): スムースフローマッチング
- Authors: Jianbin Tan, Anru R. Zhang,
- Abstract要約: 本稿では,関数データの生成モデルに適したSmooth Flow Matching (SFM) という新しいフレームワークを紹介する。
フローマッチングのアイデアに基づいて、SFMは半パラメトリックコプラフローを構築し、無限次元の関数データを生成する。
合成データの品質と計算効率の両面でSFMの利点を実証する。
- 参考スコア(独自算出の注目度): 5.586191108738564
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Functional data, i.e., smooth random functions observed over a continuous domain, are increasingly available in areas such as biomedical research, health informatics, and epidemiology. However, effective statistical analysis for functional data is often hindered by challenges such as privacy constraints, sparse and irregular sampling, infinite dimensionality, and non-Gaussian structures. To address these challenges, we introduce a novel framework named Smooth Flow Matching (SFM), tailored for generative modeling of functional data to enable statistical analysis without exposing sensitive real data. Built upon flow-matching ideas, SFM constructs a semiparametric copula flow to generate infinite-dimensional functional data, free from Gaussianity or low-rank assumptions. It is computationally efficient, handles irregular observations, and guarantees the smoothness of the generated functions, offering a practical and flexible solution in scenarios where existing deep generative methods are not applicable. Through extensive simulation studies, we demonstrate the advantages of SFM in terms of both synthetic data quality and computational efficiency. We then apply SFM to generate clinical trajectory data from the MIMIC-IV patient electronic health records (EHR) longitudinal database. Our analysis showcases the ability of SFM to produce high-quality surrogate data for downstream statistical tasks, highlighting its potential to boost the utility of EHR data for clinical applications.
- Abstract(参考訳): 連続した領域で観察されるスムーズなランダムな機能、すなわち機能データは、生物医学研究、健康情報学、疫学などの領域で利用されつつある。
しかし、機能データに対する効果的な統計分析は、プライバシーの制約、スパースと不規則なサンプリング、無限次元性、非ガウス構造といった課題によって妨げられることが多い。
これらの課題に対処するため,我々は,高感度な実データを公開することなく統計的解析を可能にするために,関数データの生成モデリングに適した,Smooth Flow Matching (SFM) という新しいフレームワークを紹介した。
フローマッチングのアイデアに基づいて、SFMは半パラメトリックのコプラフローを構築し、ガウス性やローランクの仮定を含まない無限次元の関数データを生成する。
これは計算的に効率的であり、不規則な観測を処理し、生成した関数の滑らかさを保証する。
大規模なシミュレーション研究を通じて、合成データ品質と計算効率の両方の観点から、SFMの利点を実証する。
次に、SFMを用いて、MIMIC-IV患者電子健康記録(EHR)データベースから臨床軌跡データを生成する。
本分析では,SFMが下流の統計タスクに対して高品質なサロゲートデータを生成する能力を示し,臨床応用におけるERHデータの有用性を浮き彫りにしている。
関連論文リスト
- fastHDMI: Fast Mutual Information Estimation for High-Dimensional Data [2.9901605297536027]
我々は高次元データセットにおける効率的な変数スクリーニングのために設計されたPythonパッケージであるfastHDMIを紹介した。
この研究は3つの相互情報推定手法のニューロイメージング変数選択への応用を開拓した。
論文 参考訳(メタデータ) (2024-10-14T01:49:53Z) - Functional Linear Non-Gaussian Acyclic Model for Causal Discovery [7.303542369216906]
我々は、fMRIとEEGデータセットを含む脳効果接続タスクにおける因果関係を識別するフレームワークを開発する。
非ガウス確率ベクトルと無限次元ヒルベルト空間のランダム関数の間の因果関係の同定可能性の理論的保証を確立する。
実データでは、fMRIデータから得られる脳の接続パターンを分析することに重点を置いている。
論文 参考訳(メタデータ) (2024-01-17T23:27:48Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Feature Matching Data Synthesis for Non-IID Federated Learning [7.740333805796447]
フェデレーション学習(FL)は、中央サーバでデータを収集することなく、エッジデバイス上でニューラルネットワークをトレーニングする。
本稿では,局所モデル以外の補助データを共有するハード特徴マッチングデータ合成(HFMDS)手法を提案する。
プライバシーの保存性を向上するため,本研究では,実際の特徴を決定境界に向けて伝達する機能拡張手法を提案する。
論文 参考訳(メタデータ) (2023-08-09T07:49:39Z) - Synthesize High-dimensional Longitudinal Electronic Health Records via
Hierarchical Autoregressive Language Model [40.473866438962034]
合成電子健康記録は、機械学習(ML)モデリングと統計解析のための実際のEHRの代替として機能することができる。
階層型自己回帰言語mOdel(HALO)を提案する。
論文 参考訳(メタデータ) (2023-04-04T23:53:34Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
この研究は、関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)と呼ばれる数学的に厳密なフレームワークを導入する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems [2.4554686192257424]
多次元関数データのサンプルから連続表現を学習するためのフレームワークを提案する。
本研究では, テンソル分解により, 得られた推定問題を効率的に解けることを示す。
我々は、ニューロイメージングにおける真のデータ応用で締めくくっている。
論文 参考訳(メタデータ) (2021-07-30T16:02:15Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z) - Optimization of High-dimensional Simulation Models Using Synthetic Data [0.1529342790344802]
本稿では,シミュレーションパラメータに対する可算区間の仕様のみを必要とするBuBシミュレータを提案する。
詳細な統計分析を行うことができ、最も重要なモデルパラメータについて深い洞察を得ることができる。
この研究は、新型コロナウイルスのパンデミックによって引き起こされる困難について明確に取り上げている。
論文 参考訳(メタデータ) (2020-09-06T17:21:41Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。