論文の概要: Learning to Learn the Macroscopic Fundamental Diagram using Physics-Informed and meta Machine Learning techniques
- arxiv url: http://arxiv.org/abs/2508.14137v1
- Date: Tue, 19 Aug 2025 12:59:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-21 16:52:41.22105
- Title: Learning to Learn the Macroscopic Fundamental Diagram using Physics-Informed and meta Machine Learning techniques
- Title(参考訳): 物理インフォームドおよびメタ機械学習技術を用いたマクロ基礎図の学習
- Authors: Amalie Roark, Serio Agriesti, Francisco Camara Pereira, Guido Cantelmo,
- Abstract要約: この記事では、データ不足の問題を緩和するために、モデルに新たなタスクを理解して適応するように訓練するフレームワークを提案する。
開発されたモデルは、複数の都市のデータを活用して、他の都市のMFDを異なる検出器とトポロジ構造でモデル化することで、訓練され、テストされる。
その結果, 試験したループ検出器のサブセットに応じて, 17500~36000の流速予測が平均MSE改善した。
- 参考スコア(独自算出の注目度): 0.09999629695552192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Macroscopic Fundamental Diagram is a popular tool used to describe traffic dynamics in an aggregated way, with applications ranging from traffic control to incident analysis. However, estimating the MFD for a given network requires large numbers of loop detectors, which is not always available in practice. This article proposes a framework harnessing meta-learning, a subcategory of machine learning that trains models to understand and adapt to new tasks on their own, to alleviate the data scarcity challenge. The developed model is trained and tested by leveraging data from multiple cities and exploiting it to model the MFD of other cities with different shares of detectors and topological structures. The proposed meta-learning framework is applied to an ad-hoc Multi-Task Physics-Informed Neural Network, specifically designed to estimate the MFD. Results show an average MSE improvement in flow prediction ranging between ~ 17500 and 36000 (depending on the subset of loop detectors tested). The meta-learning framework thus successfully generalizes across diverse urban settings and improves performance on cities with limited data, demonstrating the potential of using meta-learning when a limited number of detectors is available. Finally, the proposed framework is validated against traditional transfer learning approaches and tested with FitFun, a non-parametric model from the literature, to prove its transferability.
- Abstract(参考訳): マクロ・ベーシック・ダイアグラム(Macroscopic Fundamental Diagram)は、トラフィック制御からインシデント分析に至るまで、トラフィックのダイナミクスを集約的に記述する一般的なツールである。
しかし、あるネットワークに対してMFDを推定するには多数のループ検出器が必要であるため、実際には必ずしも利用できない。
本稿では,機械学習のサブカテゴリであるメタラーニングを活用するフレームワークを提案する。
開発されたモデルは、複数の都市のデータを活用して、他の都市のMFDを異なる検出器とトポロジ構造でモデル化することで、訓練され、テストされる。
提案するメタラーニングフレームワークは,MFDを推定するために特別に設計された,アドホックなマルチタスク物理情報ニューラルネットワークに適用される。
その結果, 約17500~36000(ループ検出器のサブセットに依存する)の流速予測における平均MSE改善が示された。
このメタラーニングフレームワークは、多様な都市環境をまたがってうまく一般化し、限られたデータを持つ都市の性能を改善し、限られた数の検出器が利用できる場合にメタラーニングを使用する可能性を示す。
最後に、提案フレームワークは従来の移動学習手法に対して検証され、文献の非パラメトリックモデルであるFitFunを用いてその伝達可能性を証明する。
関連論文リスト
- Meta-UAD: A Meta-Learning Scheme for User-level Network Traffic Anomaly Detection [15.038762892493219]
ユーザレベルのネットワークトラフィック異常検出のためのメタラーニング手法である textitMeta-UAD を提案する。
我々はCICFlowMeterを使って81のフローレベルの統計的特徴を抽出し、いくつかの無効な特徴を取り除く。
既存のモデルと比較すると,Meta-UADはF1スコアで15%から43%向上した。
論文 参考訳(メタデータ) (2024-08-30T06:05:15Z) - A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
マルチモーダル・ファンデーション・モデルは視覚と言語を交わす多くのアプリケーションに役立っている。
モデルを更新し続けるために、継続事前トレーニングの研究は主に、大規模な新しいデータに対する頻度の低い、差別的な更新、あるいは頻繁に行われるサンプルレベルの更新のシナリオを探求する。
本稿では,FoMo-in-Flux(FoMo-in-Flux)について紹介する。
論文 参考訳(メタデータ) (2024-08-26T17:59:01Z) - MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
ファンデーションモデルは、様々な画像解釈タスクを強化することで、リモートセンシング(RS)のランドスケープを再構築した。
事前訓練されたモデルを下流のタスクに転送することは、イメージ分類やオブジェクト識別タスクとして事前訓練の定式化によるタスクの相違に遭遇する可能性がある。
SAMRSデータセット上で、セマンティックセグメンテーション、インスタンスセグメンテーション、回転オブジェクト検出を含むマルチタスクによる事前トレーニングを行う。
我々のモデルは、シーン分類、水平・回転物体検出、セマンティックセグメンテーション、変化検出など、様々なRS下流タスクに基づいて微調整される。
論文 参考訳(メタデータ) (2024-03-20T09:17:22Z) - Latent Task-Specific Graph Network Simulators [16.881339139068018]
グラフネットワークシミュレータ(GNS)は、従来の物理ベースのシミュレータに代わる効率的な代替手段である。
メッシュに基づくシミュレーションをメタラーニング問題とし,最近のベイズメタラーニング手法を用いて新たなシナリオへのGASの適応性を向上させる。
提案手法の有効性を,様々な実験により検証し,確立されたベースライン法と同等以上の性能を示した。
論文 参考訳(メタデータ) (2023-11-09T10:30:51Z) - Unsupervised Representation Learning to Aid Semi-Supervised Meta
Learning [16.534014215010757]
トレーニングサンプルの潜在表現を学習するために,一発の教師なしメタラーニングを提案する。
メタラーニングの内ループでは、温度スケールのクロスエントロピー損失を使用し、オーバーフィッティングを防止する。
提案手法はモデル非依存であり, どんなメタ学習モデルでも精度を向上させることができる。
論文 参考訳(メタデータ) (2023-10-19T18:25:22Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - A transfer learning enhanced the physics-informed neural network model
for vortex-induced vibration [0.0]
本稿では、VIV(2D)を研究するために、物理インフォームドニューラルネットワーク(PINN)モデルを用いたトランスファーラーニングを提案する。
物理インフォームドニューラルネットワークは、転送学習法と併用することにより、学習効率を高め、大量のデータセットを必要とせずに、ソースモデルからの共通特性知識による目標タスクの予測可能性を維持する。
論文 参考訳(メタデータ) (2021-12-29T08:20:23Z) - Meta-learning framework with applications to zero-shot time-series
forecasting [82.61728230984099]
この研究は幅広いメタラーニングフレームワークを使って肯定的な証拠を提供する。
残余接続はメタラーニング適応機構として機能する。
我々は、ソースTSデータセット上でニューラルネットワークをトレーニングし、異なるターゲットTSデータセット上で再トレーニングすることなくデプロイできることを示します。
論文 参考訳(メタデータ) (2020-02-07T16:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。