論文の概要: Accelerating Image Classification with Graph Convolutional Neural Networks using Voronoi Diagrams
- arxiv url: http://arxiv.org/abs/2508.14218v1
- Date: Tue, 19 Aug 2025 19:29:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-21 16:52:41.252473
- Title: Accelerating Image Classification with Graph Convolutional Neural Networks using Voronoi Diagrams
- Title(参考訳): ボロノイ図を用いたグラフ畳み込みニューラルネットワークによる画像分類の高速化
- Authors: Mustafa Mohammadi Gharasuie, Luis Rueda,
- Abstract要約: 本稿では,グラフ畳み込みネットワーク(GCN)とボロノイ図を併用したリレーショナルデータをモデル化する革新的なフレームワークを提案する。
本モデルは,いくつかのベンチマークデータセットにおいて,前処理時間と分類精度を大幅に向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recent advances in image classification have been significantly propelled by the integration of Graph Convolutional Networks (GCNs), offering a novel paradigm for handling complex data structures. This study introduces an innovative framework that employs GCNs in conjunction with Voronoi diagrams to peform image classification, leveraging their exceptional capability to model relational data. Unlike conventional convolutional neural networks, our approach utilizes a graph-based representation of images, where pixels or regions are treated as vertices of a graph, which are then simplified in the form of the corresponding Delaunay triangulations. Our model yields significant improvement in pre-processing time and classification accuracy on several benchmark datasets, surpassing existing state-of-the-art models, especially in scenarios that involve complex scenes and fine-grained categories. The experimental results, validated via cross-validation, underscore the potential of integrating GCNs with Voronoi diagrams in advancing image classification tasks. This research contributes to the field by introducing a novel approach to image classification, while opening new avenues for developing graph-based learning paradigms in other domains of computer vision and non-structured data. In particular, we have proposed a new version of the GCN in this paper, namely normalized Voronoi Graph Convolution Network (NVGCN), which is faster than the regular GCN.
- Abstract(参考訳): 画像分類の最近の進歩は、複雑なデータ構造を扱うための新しいパラダイムを提供するグラフ畳み込みネットワーク(GCN)の統合によって著しく促進されている。
本稿では,リレーショナルデータのモデル化に際し,GCNとボロノイ図を併用して画像分類を行う,革新的なフレームワークを提案する。
従来の畳み込みニューラルネットワークとは異なり、我々は画像のグラフベース表現を利用して、ピクセルや領域をグラフの頂点として扱い、それに対応するデラウネー三角測量の形で単純化する。
提案モデルでは,複数のベンチマークデータセットの事前処理時間と分類精度が向上し,特に複雑なシーンや細かなカテゴリを含むシナリオにおいて,既存の最先端モデルを上回っている。
クロスバリデーションによって検証された実験結果は、画像分類タスクの進行において、GCNとボロノイ図の統合の可能性を示している。
本研究は,コンピュータビジョンや非構造化データの他の領域において,グラフに基づく学習パラダイムを開発するための新たな道を開くとともに,画像分類への新たなアプローチを導入することにより,この分野に寄与する。
特に,本論文では,通常のGCNよりも高速な正規化Voronoi Graph Convolution Network (NVGCN) というGCNの新バージョンを提案する。
関連論文リスト
- Learning Dynamic Graphs via Tensorized and Lightweight Graph Convolutional Networks [0.0]
動的グラフの正確な表現学習を実現するために動的グラフ畳み込みネットワーク(DGCN)が成功している。
本研究は,動的グラフ学習のための新しい軽量グラフコナーネットワーク (TLGCN) を提案する。
論文 参考訳(メタデータ) (2025-04-22T06:13:32Z) - Subgraph Clustering and Atom Learning for Improved Image Classification [4.499833362998488]
本稿では,特徴抽出のための畳み込みニューラルネットワーク(CNN)と構造モデリングのためのグラフニューラルネットワーク(GNN)の長所を融合した,新しいハイブリッド画像分類モデルであるグラフサブグラフネットワーク(GSN)を提案する。
GSNはk平均クラスタリングを使用してグラフノードをクラスタにグループ化し、サブグラフの作成を容易にする。
これらの部分グラフを使用して、辞書学習のための代表原子を学習し、スパースでクラス区別可能な特徴の識別を可能にする。
論文 参考訳(メタデータ) (2024-07-20T06:32:00Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - E-GraphSAGE: A Graph Neural Network based Intrusion Detection System [3.3598755777055374]
本稿では,グラフニューラルネットワーク(GNN)に基づく新しいネットワーク侵入検知システム(NIDS)を提案する。
GNNはディープニューラルネットワークの比較的新しいサブフィールドであり、グラフベースのデータ固有の構造を活用するユニークな能力を持っている。
最近の6つのNIDSベンチマークデータセットに基づく実験的評価は、E-GraphSAGEベースのNIDSの優れた性能を示している。
論文 参考訳(メタデータ) (2021-03-30T13:21:31Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Knowledge Embedding Based Graph Convolutional Network [35.35776808660919]
本稿では,知識埋め込みに基づくグラフ畳み込みネットワーク(KE-GCN)という新しいフレームワークを提案する。
KE-GCNはグラフベースの信念伝播におけるグラフ畳み込みネットワーク(GCN)のパワーと高度な知識埋め込み手法の強みを組み合わせたものである。
理論的解析により、KE-GCNはいくつかのよく知られたGCN法のエレガントな統一を具体例として示している。
論文 参考訳(メタデータ) (2020-06-12T17:12:51Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。