論文の概要: ISCA: A Framework for Interview-Style Conversational Agents
- arxiv url: http://arxiv.org/abs/2508.14344v1
- Date: Wed, 20 Aug 2025 01:38:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-21 16:52:41.304379
- Title: ISCA: A Framework for Interview-Style Conversational Agents
- Title(参考訳): ISCA: インタビュースタイルの会話エージェントのためのフレームワーク
- Authors: Charles Welch, Allison Lahnala, Vasudha Varadarajan, Lucie Flek, Rada Mihalcea, J. Lomax Boyd, João Sedoc,
- Abstract要約: インタビュースタイルの会話エージェントを実装するための非生成システムを提案する。
ユースケースには、会話の流れに対する制御や標準化が望まれる姿勢形成や行動変化を追跡するアプリケーションが含まれる。
私たちのコードはオープンソースで、他の人が作業から構築し、追加機能の拡張を開発することができます。
- 参考スコア(独自算出の注目度): 32.89365435120319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a low-compute non-generative system for implementing interview-style conversational agents which can be used to facilitate qualitative data collection through controlled interactions and quantitative analysis. Use cases include applications to tracking attitude formation or behavior change, where control or standardization over the conversational flow is desired. We show how our system can be easily adjusted through an online administrative panel to create new interviews, making the tool accessible without coding. Two case studies are presented as example applications, one regarding the Expressive Interviewing system for COVID-19 and the other a semi-structured interview to survey public opinion on emerging neurotechnology. Our code is open-source, allowing others to build off of our work and develop extensions for additional functionality.
- Abstract(参考訳): 本稿では,対話の制御や定量的分析による質的データ収集を容易にするために,インタビュースタイルの対話エージェントを実装するための低スループットな非生成システムを提案する。
ユースケースには、会話の流れに対する制御や標準化が望まれる姿勢形成や行動変化を追跡するアプリケーションが含まれる。
オンライン管理パネルを通じてシステムを簡単に調整して,新たなインタビューを作成する方法を示し,そのツールをコーディングせずに利用できるようにした。
2つのケーススタディが応用例として紹介され、1つは、新型コロナウイルスのExpressive Interviewingシステムに関するもので、もう1つは、新興神経テクノロジーに関する世論調査のための半構造化インタビューである。
私たちのコードはオープンソースで、他の人が作業から構築し、追加機能の拡張を開発することができます。
関連論文リスト
- ChatSOP: An SOP-Guided MCTS Planning Framework for Controllable LLM Dialogue Agents [52.7201882529976]
対話エージェントの制御性を高めるため,SOP誘導モンテカルロ木探索(MCTS)計画フレームワークを提案する。
これを実現するために、GPT-4oを用いた半自動ロールプレイシステムを用いて、SOPアノテーション付きマルチシナリオ対話からなるデータセットをキュレートする。
また、SOP予測のための教師付き微調整と思考の連鎖推論を統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-04T12:23:02Z) - Unsupervised Extraction of Dialogue Policies from Conversations [3.102576158218633]
本稿では,データセットから対話ポリシーを抽出する上で,Large Language Modelがいかに有効かを示す。
そこで我々は,制御可能かつ解釈可能なグラフベースの手法を用いて対話ポリシーを生成する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-21T14:57:25Z) - MockLLM: A Multi-Agent Behavior Collaboration Framework for Online Job Seeking and Recruiting [29.676163697160945]
モックインタビューインタラクションの生成と評価を行う新しいフレームワークである textbfMockLLM を提案する。
インタビュアーと候補の両方の役割をシミュレートすることで、MockLLMはリアルタイムと双方向のマッチングのための一貫性のある協調的なインタラクションを可能にする。
我々は、中国の主要な採用プラットフォームであるBoss Zhipinの実際のデータに基づいて、MockLLMを評価した。
論文 参考訳(メタデータ) (2024-05-28T12:23:16Z) - CAMEL: Communicative Agents for "Mind" Exploration of Large Language
Model Society [58.04479313658851]
本稿では,コミュニケーションエージェント間の自律的協調を支援するスケーラブルな手法の構築の可能性について検討する。
本稿では,ロールプレイングという新しいコミュニケーションエージェントフレームワークを提案する。
コントリビューションには、新しいコミュニケーティブエージェントフレームワークの導入、マルチエージェントシステムの協調行動や能力を研究するためのスケーラブルなアプローチの提供などが含まれます。
論文 参考訳(メタデータ) (2023-03-31T01:09:00Z) - A Case Study in Engineering a Conversational Programming Assistant's
Persona [72.47187215119664]
会話能力は、既存のコード流大言語モデルを使用することで達成された。
プロンプトの進化に関する議論は、既存の基礎モデルを特定のアプリケーションに望ましい方法で振る舞う方法に関するケーススタディを提供する。
論文 参考訳(メタデータ) (2023-01-13T14:48:47Z) - Deploying a Retrieval based Response Model for Task Oriented Dialogues [8.671263996400844]
タスク指向の対話システムは会話能力が高く、状況の変化に容易に適応でき、ビジネス上の制約に適合する必要がある。
本稿では,これらの基準を満たす対話モデルを開発するための3段階の手順について述べる。
論文 参考訳(メタデータ) (2022-10-25T23:10:19Z) - GODEL: Large-Scale Pre-Training for Goal-Directed Dialog [119.1397031992088]
ダイアログのための大規模事前学習言語モデルであるGODELを紹介する。
GODELは、数ショットの微調整設定で、最先端の事前訓練ダイアログモデルより優れていることを示す。
評価手法の新たな特徴は,応答の有用性を評価するユーティリティの概念の導入である。
論文 参考訳(メタデータ) (2022-06-22T18:19:32Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
対話システム研究における既存の研究は、主にタスク指向の対話とチャットを独立したドメインとして扱う。
本研究では,タスク指向対話と知識ベースチップチャットを一つのモデルに効果的に統合する方法について検討する。
論文 参考訳(メタデータ) (2022-05-11T16:01:03Z) - Actionable Conversational Quality Indicators for Improving Task-Oriented
Dialog Systems [2.6094079735487994]
本稿では、ACQI(Actionable Conversational Quality Indicator)の使用について紹介し、解説する。
ACQIは、改善可能なダイアログの一部を認識し、改善する方法を推奨するために使用される。
本稿では、商用顧客サービスアプリケーションで使用されるLivePersonの内部ダイアログシステムにおけるACQIの使用の有効性を示す。
論文 参考訳(メタデータ) (2021-09-22T22:41:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。