論文の概要: Quantum Long Short-term Memory with Differentiable Architecture Search
- arxiv url: http://arxiv.org/abs/2508.14955v1
- Date: Wed, 20 Aug 2025 16:15:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-22 16:26:46.04692
- Title: Quantum Long Short-term Memory with Differentiable Architecture Search
- Title(参考訳): 微分可能なアーキテクチャ探索による量子長短期記憶
- Authors: Samuel Yen-Chi Chen, Prayag Tiwari,
- Abstract要約: QLSTMのような量子リカレントモデルは、時系列予測、NLP、強化学習を約束している。
DiffQAS-QLSTMは、トレーニング中のVQCパラメータとアーキテクチャ選択の両方を最適化するエンドツーエンドの差別化可能なフレームワークである。
我々の結果は、DiffQAS-QLSTMが手作りのベースラインを一貫して上回り、多様なテスト設定で損失を減らしていることを示している。
- 参考スコア(独自算出の注目度): 9.511240423252707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in quantum computing and machine learning have given rise to quantum machine learning (QML), with growing interest in learning from sequential data. Quantum recurrent models like QLSTM are promising for time-series prediction, NLP, and reinforcement learning. However, designing effective variational quantum circuits (VQCs) remains challenging and often task-specific. To address this, we propose DiffQAS-QLSTM, an end-to-end differentiable framework that optimizes both VQC parameters and architecture selection during training. Our results show that DiffQAS-QLSTM consistently outperforms handcrafted baselines, achieving lower loss across diverse test settings. This approach opens the door to scalable and adaptive quantum sequence learning.
- Abstract(参考訳): 量子コンピューティングと機械学習の最近の進歩により、量子機械学習(QML)が登場し、シーケンシャルデータからの学習への関心が高まっている。
QLSTMのような量子リカレントモデルは、時系列予測、NLP、強化学習を約束している。
しかしながら、有効な変分量子回路(VQC)の設計は依然として困難であり、しばしばタスク固有である。
これを解決するために、トレーニング中のVQCパラメータとアーキテクチャ選択の両方を最適化するエンドツーエンドの差別化可能なフレームワークであるDiffQAS-QLSTMを提案する。
我々の結果は、DiffQAS-QLSTMが手作りのベースラインを一貫して上回り、多様なテスト設定で損失を減らしていることを示している。
このアプローチは、スケーラブルで適応的な量子シーケンス学習への扉を開く。
関連論文リスト
- Differentiable Quantum Architecture Search in Quantum-Enhanced Neural Network Parameter Generation [4.358861563008207]
量子ニューラルネットワーク(QNN)は、経験的にも理論的にも有望であることを示している。
ハードウェアの欠陥と量子デバイスへの限られたアクセスは、実用的な課題となる。
微分可能最適化を用いた自動解法を提案する。
論文 参考訳(メタデータ) (2025-05-13T19:01:08Z) - Programming Variational Quantum Circuits with Quantum-Train Agent [3.360429911727189]
可変量子回路(VQC)の効率的かつスケーラブルなプログラミングを容易にするQT-QFWP(Quantum-Train Quantum Fast Weight Programmer)フレームワークを提案する。
このアプローチは、量子と古典の両方のパラメータ管理を最適化することで、従来のハイブリッド量子古典モデルに対して大きな優位性をもたらす。
QT-QFWPは、関連モデルを効率性と予測精度の両方で上回り、より実用的で費用対効果の高い量子機械学習アプリケーションへの道筋を提供する。
論文 参考訳(メタデータ) (2024-12-02T06:26:09Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
量子フェデレーション学習(QFL)は、量子機械学習(QML)モデルを使用して、複数のクライアント間の協調学習を容易にする。
関数の近似に時間的データを利用するQFLフレームワークの開発に前向きな作業は行われていない。
量子長短期メモリ(QLSTM)モデルと時間データを統合する新しいQFLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-21T21:40:47Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine learning framework [48.491303218786044]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - Quantum deep recurrent reinforcement learning [0.8702432681310399]
強化学習(Reinforcement Learning、RL)は、複雑なシーケンシャルな意思決定問題を解決するために使用できる機械学習(ML)パラダイムの1つである。
QRLエージェントのコアとなるために、量子長短期メモリ(QLSTM)を構築し、Q$-learningでモデル全体をトレーニングします。
QLSTM-DRQNは従来のDRQNよりも安定で平均スコアの高いCart-Poleのような標準ベンチマークを解くことができる。
論文 参考訳(メタデータ) (2022-10-26T17:29:19Z) - Learning Fourier series with parametrized quantum circuits [2.51657752676152]
変分量子アルゴリズム(VQA)とそのパラメタライズド量子回路(PQC)による量子機械学習分野への応用は、ノイズの多い中間スケール量子コンピューティングデバイスを活用する主要な方法の1つであると考えられている。
本稿では,PQC においてよく使われているアンス・アゼが,異なる一次元のトランケートされたフーリエ級数を学ぶかを比較することによって,Schuld らの研究に基づいて構築する。
また、Beerらが導入した散逸性量子ニューラルネットワーク(dQNN)についても検討し、その能力を高めるために、dQNNのデータ再ロード構造を提案する。
論文 参考訳(メタデータ) (2022-09-21T13:26:20Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。