論文の概要: AI as IA: The use and abuse of artificial intelligence (AI) for human enhancement through intellectual augmentation (IA)
- arxiv url: http://arxiv.org/abs/2508.16642v1
- Date: Mon, 18 Aug 2025 09:39:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.076224
- Title: AI as IA: The use and abuse of artificial intelligence (AI) for human enhancement through intellectual augmentation (IA)
- Title(参考訳): IAとしてのAI : 人工知能(AI)の知能増強による人的強化への利用と悪用
- Authors: Alexandre Erler, Vincent C. Müller,
- Abstract要約: 本稿では,AIによる人間力向上の展望と倫理について概説する。
我々は,不適切なパフォーマンス,安全性,強制と操作,プライバシ,認知の自由,信頼,公正といった倫理的問題について論じる。
結論として、AIによる人間の実力強化には、非常に重要な技術的ハードルと、重大な倫理的問題がある一方で、現実的に達成される可能性のある重要なメリットもある、と結論付けている。
- 参考スコア(独自算出の注目度): 45.88028371034407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper offers an overview of the prospects and ethics of using AI to achieve human enhancement, and more broadly what we call intellectual augmentation (IA). After explaining the central notions of human enhancement, IA, and AI, we discuss the state of the art in terms of the main technologies for IA, with or without brain-computer interfaces. Given this picture, we discuss potential ethical problems, namely inadequate performance, safety, coercion and manipulation, privacy, cognitive liberty, authenticity, and fairness in more detail. We conclude that while there are very significant technical hurdles to real human enhancement through AI, and significant ethical problems, there are also significant benefits that may realistically be achieved in ways that are consonant with a rights-based ethics as well. We also highlight the specific concerns that apply particularly to applications of AI for "sheer" IA (more realistic in the near term), and to enhancement applications, respectively.
- Abstract(参考訳): 本稿では,AIを用いて人間の強化を実現するための展望と倫理について概観し,より広範に知能増強(IA)と呼ぶものについて述べる。
人間の強化、IA、AIの中枢概念を説明した後、脳-コンピュータインターフェースの有無に関わらず、IAの主要技術の観点から最先端技術について議論する。
この写真から、パフォーマンス、安全性、強制と操作、プライバシー、認知の自由、信頼性、公平性といった潜在的な倫理的問題について議論する。
我々は、AIによる真の人間強化と重要な倫理的問題には、非常に重要な技術的ハードルがある一方で、権利に基づく倫理と調和した方法で現実的に達成される可能性のある重要な利点もあると結論付けている。
また、AIの応用に特に当てはまる特定の懸念(短期的にはより現実的な)を強調し、アプリケーションを強化する。
関連論文リスト
- Ethics through the Facets of Artificial Intelligence [0.0]
懸念は、AIのぼやけた理解、どのように使用できるか、社会でどのように解釈されたかに起因している、と我々は主張する。
本稿では,AI利用の倫理的評価のための枠組みを提案する。
論文 参考訳(メタデータ) (2025-07-22T21:21:37Z) - Aligning Generalisation Between Humans and Machines [74.120848518198]
AI技術は、科学的発見と意思決定において人間を支援することができるが、民主主義と個人を妨害することもある。
AIの責任ある使用と人間-AIチームへの参加は、AIアライメントの必要性をますます示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
本稿では,高度AIアシスタントがもたらす倫理的・社会的リスクについて論じる。
我々は、高度なAIアシスタントを自然言語インタフェースを持つ人工知能エージェントとして定義し、ユーザに代わってアクションのシーケンスを計画し実行することを目的としている。
先進的なアシスタントの社会規模での展開を考察し、協力、株式とアクセス、誤情報、経済的影響、環境、先進的なAIアシスタントの評価方法に焦点をあてる。
論文 参考訳(メタデータ) (2024-04-24T23:18:46Z) - The Ethics of AI in Education [0.0]
人工知能の研究室ベースの科学から生きた人間の文脈への移行は多くの歴史的、社会文化的偏見、不平等、道徳的ジレンマに焦点を合わせている。
AIの幅広い倫理に関する疑問は、教育におけるAI(AIED)にも関係している。
AIEDは、その技術がユーザに与える影響、そのような技術が私たちが学び、教える方法の強化や変更にどのように使われるか、そして私たちが社会や個人として、教育の成果として価値あるものについて、さらなる課題を提起します。
論文 参考訳(メタデータ) (2024-03-22T11:41:37Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
説明可能なAI(XAI)における人工知能(AI)と神経科学の交差は、複雑な意思決定プロセスにおける透明性と解釈可能性を高めるために重要である。
本稿では,機能ベースから人間中心のアプローチまで,XAI方法論の進化について考察する。
生成モデルにおける説明可能性の達成、責任あるAIプラクティスの確保、倫理的意味への対処に関する課題について論じる。
論文 参考訳(メタデータ) (2024-02-07T14:09:11Z) - The AI Incident Database as an Educational Tool to Raise Awareness of AI
Harms: A Classroom Exploration of Efficacy, Limitations, & Future
Improvements [14.393183391019292]
AIインシデントデータベース(AIID)は、AI技術の現実世界への展開に起因する害や害の先行事例を索引付けする、比較的包括的なデータベースを提供する、数少ない試みの1つである。
本研究は、社会的に高い領域におけるAI損傷の有病率と重症度に対する意識を高めるための教育ツールとしてのAIIDの有効性を評価する。
論文 参考訳(メタデータ) (2023-10-10T02:55:09Z) - On the Effect of Information Asymmetry in Human-AI Teams [0.0]
我々は、人間とAIの相補的ポテンシャルの存在に焦点を当てる。
具体的には、情報非対称性を相補性ポテンシャルの必須源とみなす。
オンライン実験を行うことで、人間がそのような文脈情報を使ってAIの決定を調整できることを実証する。
論文 参考訳(メタデータ) (2022-05-03T13:02:50Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。