論文の概要: Quantum Verifiable Rewards for Post-Training Qiskit Code Assistant
- arxiv url: http://arxiv.org/abs/2508.20907v1
- Date: Thu, 28 Aug 2025 15:37:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-29 18:12:02.483225
- Title: Quantum Verifiable Rewards for Post-Training Qiskit Code Assistant
- Title(参考訳): トレーニング後のQiskitコードアシスタントのための量子検証可能なリワード
- Authors: Nicolas Dupuis, Adarsh Tiwari, Youssef Mroueh, David Kremer, Ismael Faro, Juan Cruz-Benito,
- Abstract要約: 量子ハードウェア上でのコード品質と実行可能性を確保するための有効な方法として量子検証を導入する。
我々は、量子ハードウェアが提供する量子検証可能な報酬を活用して、GRPOを使用してモデルを訓練した。
- 参考スコア(独自算出の注目度): 7.459767023316693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Qiskit is an open-source quantum computing framework that allows users to design, simulate, and run quantum circuits on real quantum hardware. We explore post-training techniques for LLMs to assist in writing Qiskit code. We introduce quantum verification as an effective method for ensuring code quality and executability on quantum hardware. To support this, we developed a synthetic data pipeline that generates quantum problem-unit test pairs and used it to create preference data for aligning LLMs with DPO. Additionally, we trained models using GRPO, leveraging quantum-verifiable rewards provided by the quantum hardware. Our best-performing model, combining DPO and GRPO, surpasses the strongest open-source baselines on the challenging Qiskit-HumanEval-hard benchmark.
- Abstract(参考訳): Qiskitはオープンソースの量子コンピューティングフレームワークで、ユーザーは実際の量子ハードウェア上で量子回路を設計、シミュレート、実行することができる。
我々は,Qiskit コード作成を支援する LLM のポストトレーニング手法について検討する。
量子ハードウェア上でのコード品質と実行可能性を確保するための有効な方法として量子検証を導入する。
そこで我々は,量子問題ユニットテストペアを生成する合成データパイプラインを開発し,LLMをDPOに整合させるための選好データを生成する。
さらに、量子ハードウェアが提供する量子検証可能な報酬を活用して、GRPOを使用してモデルをトレーニングした。
我々の最高のパフォーマンスモデルは、DPOとGRPOを組み合わせることで、挑戦的なQiskit-HumanEval-hardベンチマークにおいて最強のオープンソースベースラインを超えています。
関連論文リスト
- Benchmarking fault-tolerant quantum computing hardware via QLOPS [2.0464713282534848]
量子アルゴリズムを実行するためには、低ノイズレベルでスケーラブルな量子ハードウェアを開発することが不可欠である。
様々なハードウェアプラットフォーム向けに、フォールトトレラントな量子コンピューティングスキームが開発されている。
本稿では,FTQC方式の性能評価指標として,QLOPS(Quantum Logical Operations Per Second)を提案する。
論文 参考訳(メタデータ) (2025-07-16T08:31:51Z) - Q-Fusion: Diffusing Quantum Circuits [2.348041867134616]
本稿では、新しい量子回路を生成するためにLayerDAGフレームワークを利用する拡散型アルゴリズムを提案する。
本結果は,提案モデルが100%有効な量子回路出力を連続的に生成することを示す。
論文 参考訳(メタデータ) (2025-04-29T14:10:10Z) - Enhancing variational quantum algorithms by balancing training on classical and quantum hardware [1.8377902806196762]
量子ニューラルネットワークを用いた最大12キュービットハミルトニアンの変分量子固有解法(VQE)と量子位相分類
量子ニューラルネットワークを用いた最大12量子ビットハミルトニアンのVQEと量子位相分類を用いた6-18量子ハミルトニアンの基底状態推定手法の数値評価を行った。
論文 参考訳(メタデータ) (2025-03-20T17:17:58Z) - Qiskit HumanEval: An Evaluation Benchmark For Quantum Code Generative Models [1.8213213818713139]
我々は、Qiskit HumanEvalデータセットを導入し、量子コードを生成するための大規模言語モデルの能力をベンチマークするために使用します。
このデータセットは100以上の量子コンピューティングタスクから構成されており、それぞれにプロンプト、標準解、そして生成した解の正確性を評価するのに困難スケールが伴っている。
論文 参考訳(メタデータ) (2024-06-20T20:14:22Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
変分量子アルゴリズム(VQA)は、量子デバイス上で量子アドバンテージを達成するための最も有望な候補の1つである。
クライアントのプライベートデータは、そのような量子クラウドモデルで量子サーバにリークされる可能性がある。
量子サーバが暗号化データを計算するための新しい量子ホモモルフィック暗号(QHE)スキームが構築されている。
論文 参考訳(メタデータ) (2023-01-25T07:00:13Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。