論文の概要: CALM: A Framework for Continuous, Adaptive, and LLM-Mediated Anomaly Detection in Time-Series Streams
- arxiv url: http://arxiv.org/abs/2508.21273v1
- Date: Fri, 29 Aug 2025 00:27:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-01 19:45:10.907331
- Title: CALM: A Framework for Continuous, Adaptive, and LLM-Mediated Anomaly Detection in Time-Series Streams
- Title(参考訳): CALM: 時系列ストリームにおける連続的・適応的・LLM媒介な異常検出のためのフレームワーク
- Authors: Ashok Devireddy, Shunping Huang,
- Abstract要約: 本稿では,リアルタイム異常検出のための新しいエンドツーエンドフレームワークであるCALMを紹介する。
CALMはApache Beam分散処理フレームワーク上に構築されている。
クローズドループで連続的な微調整機構を実装し、異常検出モデルがほぼリアルタイムで進化するデータパターンに適応できるようにする。
- 参考スコア(独自算出の注目度): 0.42970700836450476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The detection of anomalies in non-stationary time-series streams is a critical but challenging task across numerous industrial and scientific domains. Traditional models, trained offline, suffer significant performance degradation when faced with concept drift, where the underlying statistical properties of the data change over time. This paper introduces CALM (Continuous, Adaptive, and LLM-Mediated), a novel, end-to-end framework for real-time anomaly detection designed to address this challenge. CALM is built on the Apache Beam distributed processing framework and leverages the TimesFm foundation model for forecasting-based anomaly detection. The framework's novelty lies in two core contributions. First, it implements a closed-loop, continuous fine-tuning mechanism that allows the anomaly detection model to adapt to evolving data patterns in near real-time. Second, it introduces an LLM-as-a-Judge component, a Large Language Model that provides semantic, context-aware judgments on detected anomalies to curate a high-quality training dataset, deciding whether an anomaly represents transient noise or a meaningful pattern shift. We evaluate CALM on the comprehensive TSB-UAD benchmark. Our results demonstrate that the continuously fine-tuned model improves the ROC AUC score in most datasets compared to the static, pre-trained base model, validating the efficacy of our adaptive, LLM-guided approach to maintaining high-performance anomaly detection in dynamic streaming environments.
- Abstract(参考訳): 非定常時系列ストリームにおける異常の検出は、多くの産業や科学分野において重要な課題であるが難しい課題である。
オフラインでトレーニングされた従来のモデルは、コンセプトドリフトに直面するとパフォーマンスが大幅に低下する。
本稿では、この課題に対処するために設計されたリアルタイム異常検出のための新しいエンドツーエンドフレームワークであるCALM(Continuous, Adaptive, and LLM-Mediated)を紹介する。
CALMはApache Beam分散処理フレームワーク上に構築されており、TimesFmファンデーションモデルを利用して予測ベースの異常検出を行う。
フレームワークの斬新さは、2つのコアコントリビューションにあります。
まず、閉じたループで連続的な微調整機構を実装し、異常検出モデルがほぼリアルタイムで進化するデータパターンに適応できるようにする。
第二に、LLM-as-a-Judgeコンポーネント(Large Language Model)を導入し、検出された異常に対する意味的、文脈対応の判断を提供し、高品質なトレーニングデータセットをキュレートし、異常が過渡的なノイズを表すか、あるいは意味のあるパターンシフトを表すかを決定する。
総合的なTSB-UADベンチマークを用いてCALMを評価する。
提案手法は, 動的ストリーミング環境における高速異常検出に対する適応型LLM誘導方式の有効性を検証し, 静的・事前学習ベースモデルと比較して, ほとんどのデータセットにおけるROC AUCスコアが向上することを示した。
関連論文リスト
- Solving Inverse Problems with FLAIR [59.02385492199431]
フローベースの潜在生成モデルは、驚くべき品質の画像を生成でき、テキスト・ツー・イメージ生成も可能である。
本稿では,フローベース生成モデルを逆問題の前兆として活用する新しい学習自由変分フレームワークFLAIRを提案する。
標準画像ベンチマークの結果、FLAIRは再現性やサンプルの多様性の観点から、既存の拡散法や流れ法よりも一貫して優れていることが示された。
論文 参考訳(メタデータ) (2025-06-03T09:29:47Z) - Graph-Augmented LSTM for Forecasting Sparse Anomalies in Graph-Structured Time Series [0.0]
本稿では,時系列間の関係グラフをLSTM予測モデルに明示的に統合するグラフ拡張時系列予測手法を提案する。
我々は,Yahoo Webscope S5 異常データセットとMETR-LAトラフィックセンサネットワークの2つのベンチマークデータセットに対するアプローチを評価する。
その結果,F1スコアは最良基準値に対して最大10%向上した。
論文 参考訳(メタデータ) (2025-03-05T18:37:52Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
時系列異常検出(TSAD)の主な課題は、多くの実生活シナリオにおいてラベル付きデータの欠如である。
既存の異常検出手法の多くは、教師なしの方法で非ラベル時系列の正常な振る舞いを学習することに焦点を当てている。
本稿では,時系列異常検出のためのエンドツーエンドの自己教師型コントラアスティブ表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T04:45:56Z) - Incremental Outlier Detection Modelling Using Streaming Analytics in Finance & Health Care [0.0]
リアルタイムデータの時代において、従来の手法はストリーミング環境の動的な性質に追従するのに苦労することが多い。
本稿では,モデルを一度構築し,リアルタイム環境下で評価するハイブリッドフレームワークを提案する。
我々は、一級サポートベクターマシン(OCSVM)、孤立林適応型スライドウィンドウアプローチ(IForest ASD)、正確な嵐(ES)、角度ベース外乱検出(ABOD)、局所外乱係数(LOF)、Kitsunesオンラインアルゴリズム(KitNet)、K-nearest近隣の8種類の最先端外乱検出モデルを採用した。
論文 参考訳(メタデータ) (2023-05-17T02:30:28Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
本研究は、時系列異常検出のための新しい生成モデルであるDGHLを提示する。
トップダウンの畳み込みネットワークは、新しい階層的な潜在空間を時系列ウィンドウにマッピングし、時間ダイナミクスを利用して情報を効率的にエンコードする。
提案手法は,4つのベンチマーク・データセットにおいて,現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-02-15T17:19:44Z) - SALAD: Self-Adaptive Lightweight Anomaly Detection for Real-time
Recurrent Time Series [1.0437764544103274]
本稿では,Long Short-Term Memory(LSTM)と呼ばれる特殊タイプのリカレントニューラルネットワークに基づく自己適応型軽量異常検出手法であるSALADを紹介する。
2つの実世界のオープンソース時系列データセットに基づく実験により、SALADは他の5つの最先端の異常検出アプローチよりも精度が高いことが示された。
さらに、結果はSALADが軽量であり、コモディティマシンにデプロイできることも示しています。
論文 参考訳(メタデータ) (2021-04-19T10:36:23Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。