論文の概要: TimeCopilot
- arxiv url: http://arxiv.org/abs/2509.00616v1
- Date: Sat, 30 Aug 2025 21:48:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.30667
- Title: TimeCopilot
- Title(参考訳): TimeCopilot
- Authors: Azul Garza, Reneé Rosillo,
- Abstract要約: 予測のための初のオープンソースエージェントフレームワークであるTimeCopilotを紹介する。
複数の時系列ファンデーションモデル(TSFM)とLLM(Large Language Model)を単一の統一APIを通じて組み合わせる。
TimeCopilotは、機能分析、モデル選択、クロスバリデーション、予測生成といった予測パイプラインを自動化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce TimeCopilot, the first open-source agentic framework for forecasting that combines multiple Time Series Foundation Models (TSFMs) with Large Language Models (LLMs) through a single unified API. TimeCopilot automates the forecasting pipeline: feature analysis, model selection, cross-validation, and forecast generation, while providing natural language explanations and supporting direct queries about the future. The framework is LLM-agnostic, compatible with both commercial and open-source models, and supports ensembles across diverse forecasting families. Results on the large-scale GIFT-Eval benchmark show that TimeCopilot achieves state-of-the-art probabilistic forecasting performance at low cost. Our framework provides a practical foundation for reproducible, explainable, and accessible agentic forecasting systems.
- Abstract(参考訳): TimeCopilotは,複数の時系列基礎モデル(TSFM)とLLM(Large Language Model)を組み合わせた,単一の統一APIを通じて予測を行う,初のオープンソースエージェントフレームワークである。
TimeCopilotは、機能分析、モデル選択、クロスバリデーション、予測生成といった予測パイプラインを自動化すると同時に、自然言語の説明を提供し、将来について直接クエリをサポートする。
フレームワークはLLM非依存で、商用モデルとオープンソースモデルの両方と互換性があり、さまざまな予測ファミリ間のアンサンブルをサポートする。
大規模GIFT-Evalベンチマークの結果、TimeCopilotは最先端の確率予測性能を低コストで達成している。
本フレームワークは,再現性,説明性,アクセシブルなエージェント予測システムのための実用的な基盤を提供する。
関連論文リスト
- Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting [64.45587649141842]
時系列予測は多くの現実世界のアプリケーションにおいて重要な役割を果たす。
1つのモデルは、異なるテストサンプルで一貫して他よりも優れていますが、(ii) それぞれのモデルは特定のケースで優れています。
異種モデルのサンプルレベル適応融合による時系列予測のためのフレームワークであるTimeFuseを紹介する。
論文 参考訳(メタデータ) (2025-05-24T00:45:07Z) - Benchmarking Time Series Forecasting Models: From Statistical Techniques to Foundation Models in Real-World Applications [0.0]
時系列予測は、ホスピタリティ産業における運用インテリジェンスにとって不可欠である。
本研究では,14日間の地平線上での時間売上予測における統計,機械学習(ML),ディープラーニング,基礎モデルの性能を評価する。
論文 参考訳(メタデータ) (2025-02-05T17:30:31Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト is Key" (CiK) は、数値データを多種多様なテキストコンテキストと組み合わせた予測ベンチマークである。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
提案手法は,提案するベンチマークにおいて,他の試験手法よりも優れる簡易かつ効果的なLCMプロンプト法である。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Probabilistic Weather Forecasting with Hierarchical Graph Neural Networks [17.64833210797824]
本稿では,Graph-EFMと呼ばれる確率的天気予報モデルを提案する。
このモデルは、柔軟な潜在変数の定式化とグラフベースの予測フレームワークを結合する。
Graph-EFMのアンサンブル予測は、同等の決定論的モデルよりも同等または低いエラーを達成する。
論文 参考訳(メタデータ) (2024-06-07T09:01:25Z) - GenCast: Diffusion-based ensemble forecasting for medium-range weather [10.845679586464026]
我々は,世界最上位の中距離気象予測よりも高い技術と速度を持つ確率的気象モデルであるGenCastを紹介する。
GenCastは、12時間のステップと0.25度の緯度で、80以上の地表と大気の変数を8分で15日間のグローバルな予測のアンサンブルを生成する。
評価した1320の目標の97.4%よりも高いスキルを持ち、極端な天候、熱帯のサイクロン、風力発電を予測できる。
論文 参考訳(メタデータ) (2023-12-25T19:30:06Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
本稿では,デコーダのみの変換器アーキテクチャに基づく時系列予測のための汎用基礎モデルであるLag-Llamaを提案する。
Lag-Llamaは、複数のドメインからの多様な時系列データの大規模なコーパスで事前訓練され、強力なゼロショット一般化能力を示す。
このような未確認データセットの比較的小さな部分で微調整を行うと、Lag-Llamaは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-12T12:29:32Z) - AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting [80.14147131520556]
AutoGluon-TimeSeriesは、確率的時系列予測のためのオープンソースのAutoMLライブラリである。
3行のPythonコードで正確なポイントと量子予測を生成する。
論文 参考訳(メタデータ) (2023-08-10T13:28:59Z) - Masked Multi-Step Multivariate Time Series Forecasting with Future
Information [7.544120398993689]
多くの実世界の予測シナリオでは、例えば短期から中期の電力需要予測を行う際の天気情報など、将来の情報が知られている。
既存のアプローチの限界を克服するために、出力列を生成することができるニューラルネットワークモデルをトレーニングするフレームワークであるMMMFを提案する。
本研究は,(1)中期電力需要予測のための実世界の2つのデータセットと(2)2ヶ月前のフライト出発に関する実験を行った。
論文 参考訳(メタデータ) (2022-09-28T20:49:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。