論文の概要: Energy Efficient Exact and Approximate Systolic Array Architecture for Matrix Multiplication
- arxiv url: http://arxiv.org/abs/2509.00778v1
- Date: Sun, 31 Aug 2025 10:15:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.390023
- Title: Energy Efficient Exact and Approximate Systolic Array Architecture for Matrix Multiplication
- Title(参考訳): 行列乗算のためのエネルギー効率の良いエクササイズと近似シストリックアレーアーキテクチャ
- Authors: Pragun Jaswal, L. Hemanth Krishna, B. Srinivasu,
- Abstract要約: ディープニューラルネットワーク(DNN)は、複雑な計算のために非常に効率的な行列乗算エンジンを必要とする。
本稿では,新しい高精度および近似処理要素(PE)を組み込んだシストリックアレイアーキテクチャを提案する。
提案した8ビットの正確なPE設計と近似PE設計は、それぞれ22%と32%の省エネを達成する8x8シストリックアレイで採用されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Deep Neural Networks (DNNs) require highly efficient matrix multiplication engines for complex computations. This paper presents a systolic array architecture incorporating novel exact and approximate processing elements (PEs), designed using energy-efficient positive partial product and negative partial product cells, termed as PPC and NPPC, respectively. The proposed 8-bit exact and approximate PE designs are employed in a 8x8 systolic array, which achieves a energy savings of 22% and 32%, respectively, compared to the existing design. To demonstrate their effectiveness, the proposed PEs are integrated into a systolic array (SA) for Discrete Cosine Transform (DCT) computation, achieving high output quality with a PSNR of 38.21,dB. Furthermore, in an edge detection application using convolution, the approximate PE achieves a PSNR of 30.45,dB. These results highlight the potential of the proposed design to deliver significant energy efficiency while maintaining competitive output quality, making it well-suited for error-resilient image and vision processing applications.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、複雑な計算のために非常に効率的な行列乗算エンジンを必要とする。
本稿では,エネルギー効率の良い正の部分積と負の部分積をそれぞれPPC,NPPCと呼ぶ負の部分積を用いて設計した,新しい正確な処理要素と近似処理要素を組み込んだシストリックアレイアーキテクチャを提案する。
提案した8ビットの正確なPE設計と近似PE設計は、既存の設計と比較して、それぞれ22%と32%の省エネを実現している8x8シストリックアレイで採用されている。
それらの有効性を示すため,提案PEは離散コサイン変換(DCT)計算のためのシストリックアレイ(SA)に統合され,PSNR38.21,dBの高出力品質を実現する。
さらに、畳み込みを用いたエッジ検出アプリケーションでは、近似PEがPSNR30.45,dBを達成する。
これらの結果は、競合する出力品質を維持しつつ、エネルギー効率を大幅に向上させる設計の可能性を強調し、エラー耐性画像や視覚処理用途に適している。
関連論文リスト
- Low Power Approximate Multiplier Architecture for Deep Neural Networks [0.0]
4:2圧縮機は1つの組み合わせエラーしか導入せず、8x8符号の符号なし乗算器として設計・統合されている。
提案する乗算器は、独自の畳み込み層内で採用され、画像認識や復調を含むニューラルネットワークタスクで評価される。
論文 参考訳(メタデータ) (2025-08-31T09:25:42Z) - Efficient Memristive Spiking Neural Networks Architecture with Supervised In-Situ STDP Method [0.0]
時間的スパイクエンコーディングを備えたメムリスタベースのスパイキングニューラルネットワーク(SNN)は、超低エネルギー計算を可能にする。
本稿では,新しい教師付きin-situ学習アルゴリズムを用いて学習した回路レベルのメムリシブスパイクニューラルネットワーク(SNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-07-28T17:09:48Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
本稿では,ペロブスカイト・メムリスタの製作を同時に最適化し,ロバストなアナログDNNを開発するための相乗的手法を提案する。
BO誘導ノイズインジェクションを利用したトレーニング戦略であるBayesMultiを開発した。
我々の統合されたアプローチは、より深くより広いネットワークでのアナログコンピューティングの使用を可能にし、最大100倍の改善を実現します。
論文 参考訳(メタデータ) (2024-12-03T19:20:08Z) - The Potential of Combined Learning Strategies to Enhance Energy Efficiency of Spiking Neuromorphic Systems [0.0]
この原稿は、畳み込みスパイキングニューラルネットワーク(CSNN)のための新しい複合学習アプローチを通じて、脳にインスパイアされた知覚コンピュータマシンの強化に焦点を当てている。
CSNNは、人間の脳にインスパイアされたエネルギー効率の良いスパイクニューロン処理を提供する、バックプロパゲーションのような従来のパワー集約的で複雑な機械学習手法に代わる、有望な代替手段を提供する。
論文 参考訳(メタデータ) (2024-08-13T18:40:50Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
スパイキングニューラルネットワーク(SNN)は人間の脳の情報処理機構を模倣し、エネルギー効率が高い。
本稿では,空間圧縮と時間圧縮の両方を自動ネットワーク設計プロセスに組み込むLitE-SNNという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-26T05:23:11Z) - Dynamic Decision Tree Ensembles for Energy-Efficient Inference on IoT
Edge Nodes [12.99136544903102]
ランダムフォレスト (RFs) やグラディエント・ブースティング (GBTs) のような決定木アンサンブルは、その複雑さが比較的低いため、この作業に特に適している。
本稿では、遅延/エネルギー目標と処理された入力の複雑さの両方に基づいて実行された木数を調整する動的アンサンブルの使用を提案する。
我々は、Pythonアンサンブルを最適化されたCコードに変換するツールを設計し、これらのアルゴリズムをマルチコアの低消費電力IoTデバイスにデプロイすることに重点を置いている。
論文 参考訳(メタデータ) (2023-06-16T11:59:18Z) - PCBDet: An Efficient Deep Neural Network Object Detection Architecture
for Automatic PCB Component Detection on the Edge [48.7576911714538]
PCBDetは、最先端の推論スループットを提供するアテンションコンデンサネットワーク設計である。
他の最先端のアーキテクチャ設計に比べて優れたPCBコンポーネント検出性能を実現している。
論文 参考訳(メタデータ) (2023-01-23T04:34:25Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
本稿では,高画質なセグメンテーションマスクと,パラメータ,計算コスト,推論速度の両面での効率性を提供するUNETR++という3次元医用画像セグメンテーション手法を提案する。
我々の設計の核となるのは、空間的およびチャネル的な識別的特徴を効率的に学習する、新しい効率的な対注意ブロック(EPA)の導入である。
Synapse, BTCV, ACDC, BRaTs, Decathlon-Lungの5つのベンチマークで評価した結果, 効率と精度の両面で, コントリビューションの有効性が示された。
論文 参考訳(メタデータ) (2022-12-08T18:59:57Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - ESSOP: Efficient and Scalable Stochastic Outer Product Architecture for
Deep Learning [1.2019888796331233]
行列ベクトル乗算(MVM)とベクトルベクトル外積(VVOP)は、ディープニューラルネットワーク(DNN)のトレーニングに関連する2つの最も高価な演算である。
DNNの重み更新において,多くの最先端ネットワークで要求される活性化機能を備えたSCに効率的な手法を導入する。
我々のアーキテクチャは、乱数を再使用し、ビットシフトスケーリングによって特定のFP乗算演算を置き換えることで計算コストを削減する。
14nm技術ノードにおけるESSOPのハードウェア設計は、高度にパイプライン化されたFP16乗算器と比較して、ESSOPは82.2%、93.7%エネルギー効率が良いことを示している。
論文 参考訳(メタデータ) (2020-03-25T07:54:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。