論文の概要: Agentic Workflow for Education: Concepts and Applications
- arxiv url: http://arxiv.org/abs/2509.01517v1
- Date: Mon, 01 Sep 2025 14:39:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.737792
- Title: Agentic Workflow for Education: Concepts and Applications
- Title(参考訳): 教育のためのエージェントワークフロー:概念と応用
- Authors: Yuan-Hao Jiang, Yijie Lu, Ling Dai, Jiatong Wang, Ruijia Li, Bo Jiang,
- Abstract要約: 本研究では,自己回帰,ツールの実行,タスク計画,マルチエージェント協調からなる4成分モデルであるエージェント・フォー・教育(AWE)を紹介した。
AWEは、教師の作業量を削減し、教育の質を高め、より広範な教育革新を可能にする、有望な道を提供する。
- 参考スコア(独自算出の注目度): 7.875055566698523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancement of Large Language Models (LLMs) and Artificial Intelligence (AI) agents, agentic workflows are showing transformative potential in education. This study introduces the Agentic Workflow for Education (AWE), a four-component model comprising self-reflection, tool invocation, task planning, and multi-agent collaboration. We distinguish AWE from traditional LLM-based linear interactions and propose a theoretical framework grounded in the von Neumann Multi-Agent System (MAS) architecture. Through a paradigm shift from static prompt-response systems to dynamic, nonlinear workflows, AWE enables scalable, personalized, and collaborative task execution. We further identify four core application domains: integrated learning environments, personalized AI-assisted learning, simulation-based experimentation, and data-driven decision-making. A case study on automated math test generation shows that AWE-generated items are statistically comparable to real exam questions, validating the model's effectiveness. AWE offers a promising path toward reducing teacher workload, enhancing instructional quality, and enabling broader educational innovation.
- Abstract(参考訳): LLM(Large Language Models)とAI(Artificial Intelligence)エージェントの急速な進歩により、エージェントワークフローは教育における変革の可能性を示している。
本研究では、自己回帰、ツール呼び出し、タスクプランニング、マルチエージェントコラボレーションからなる4成分モデルであるAWEを紹介した。
我々は従来のLLMに基づく線形相互作用とAWEを区別し、フォン・ノイマン・マルチエージェント・システム(MAS)アーキテクチャに基づく理論的枠組みを提案する。
静的なプロンプト応答システムから動的で非線形なワークフローへのパラダイムシフトによって、AWEはスケーラブルでパーソナライズされ、協調的なタスク実行を可能にします。
さらに、統合学習環境、パーソナライズされたAI支援学習、シミュレーションベースの実験、データ駆動意思決定の4つのコアアプリケーションドメインを特定します。
自動数学テスト生成のケーススタディでは、AWE生成項目は実際の試験問題と統計的に比較され、モデルの有効性が検証される。
AWEは、教師の作業量を削減し、教育の質を高め、より広範な教育革新を可能にする、有望な道を提供する。
関連論文リスト
- LAM SIMULATOR: Advancing Data Generation for Large Action Model Training via Online Exploration and Trajectory Feedback [121.78866929908871]
AIエージェントのための大規模アクションモデル(LAM)は、素晴らしいポテンシャルを提供するが、高品質なトレーニングデータを必要とするため、課題に直面している。
LAM SIMULATORは,高品質なフィードバックによるエージェントタスクのオンライン探索を目的とした総合的なフレームワークである。
本フレームワークは,動的タスククエリジェネレータ,広範囲なツールコレクション,および大規模言語モデル(LLM)エージェントがツールを呼び出し,リアルタイムフィードバックを受信できる対話型環境を備えている。
論文 参考訳(メタデータ) (2025-06-02T22:36:02Z) - Evolution of AI in Education: Agentic Workflows [2.1681971652284857]
人工知能(AI)は教育の様々な側面を変えてきた。
大規模言語モデル(LLM)は、自動学習、アセスメント、コンテンツ生成の進歩を推進している。
これらの制限に対処し、より持続可能な技術プラクティスを促進するために、AIエージェントは教育革新のための有望な新しい道として登場した。
論文 参考訳(メタデータ) (2025-04-25T13:44:57Z) - MLGym: A New Framework and Benchmark for Advancing AI Research Agents [51.9387884953294]
我々はMeta MLGymとMLGym-Benchを紹介した。これはAI研究タスクにおける大規模言語モデルの評価と開発のための新しいフレームワークとベンチマークである。
これは機械学習(ML)タスクのための最初のGym環境であり、そのようなエージェントをトレーニングするための強化学習(RL)アルゴリズムの研究を可能にする。
我々は、Claude-3.5-Sonnet、Llama-3.1 405B、GPT-4o、o1-preview、Gemini-1.5 Proなどのベンチマークで、多くのフロンティア大言語モデル(LLM)を評価した。
論文 参考訳(メタデータ) (2025-02-20T12:28:23Z) - Perspectives for Direct Interpretability in Multi-Agent Deep Reinforcement Learning [0.41783829807634765]
マルチエージェントディープ強化学習(MADRL)は、ロボット工学やゲームにおいて複雑な問題を解くのに効果的であることが証明された。
本稿では, 学習モデルから直接, ポストホックな説明を生成することによって, 直接解釈可能であることを提唱する。
我々は、関連バックプロパゲーション、知識エディション、モデルステアリング、アクティベーションパッチ、スパースオートエンコーダ、サーキットディスカバリなど、現代的な手法を探求する。
論文 参考訳(メタデータ) (2025-02-02T09:15:27Z) - ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems [80.69865295743149]
この研究は、LLMベースのエージェントを使用して、協調AIシステムを自律的に設計する試みである。
ComfyBenchをベースとしたComfyAgentは,エージェントが自律的に協調的なAIシステムを生成して設計できるようにするフレームワークである。
ComfyAgentは、o1-previewに匹敵する解像度を達成し、ComfyBenchの他のエージェントをはるかに上回っているが、ComfyAgentはクリエイティブタスクの15%しか解決していない。
論文 参考訳(メタデータ) (2024-09-02T17:44:10Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - An Interactive Agent Foundation Model [49.77861810045509]
本稿では,AIエージェントを訓練するための新しいマルチタスクエージェントトレーニングパラダイムを用いた対話型エージェント基礎モデルを提案する。
トレーニングパラダイムは、視覚マスク付きオートエンコーダ、言語モデリング、次世代の予測など、多様な事前学習戦略を統一する。
私たちは、ロボティクス、ゲームAI、ヘルスケアという3つの異なる領域でフレームワークのパフォーマンスを実演します。
論文 参考訳(メタデータ) (2024-02-08T18:58:02Z) - TrainerAgent: Customizable and Efficient Model Training through
LLM-Powered Multi-Agent System [14.019244136838017]
TrainerAgentは、タスク、データ、モデル、サーバーエージェントを含むマルチエージェントフレームワークである。
これらのエージェントは、ユーザ定義のタスク、入力データ、要求(例えば、精度、速度)を分析し、データとモデルの両方の観点からそれらを最適化して満足なモデルを取得し、最終的にこれらのモデルをオンラインサービスとしてデプロイする。
本研究は,従来のモデル開発と比較して,効率と品質が向上した望ましいモデルの実現において,大きな進歩を示すものである。
論文 参考訳(メタデータ) (2023-11-11T17:39:24Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。