論文の概要: Multi-vessel Interaction-Aware Trajectory Prediction and Collision Risk Assessment
- arxiv url: http://arxiv.org/abs/2509.01836v1
- Date: Mon, 01 Sep 2025 23:38:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.860386
- Title: Multi-vessel Interaction-Aware Trajectory Prediction and Collision Risk Assessment
- Title(参考訳): 多容器間相互作用による軌道予測と衝突リスク評価
- Authors: Md Mahbub Alam, Jose F. Rodrigues-Jr, Gabriel Spadon,
- Abstract要約: 衝突リスク解析を統合した多容器軌道予測のための変圧器ベースのフレームワークを提案する。
大規模実世界のAISデータ上での連成マルチコンテナメトリクスを用いたモデルの評価を行った。
- 参考スコア(独自算出の注目度): 0.3277163122167433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate vessel trajectory prediction is essential for enhancing situational awareness and preventing collisions. Still, existing data-driven models are constrained mainly to single-vessel forecasting, overlooking vessel interactions, navigation rules, and explicit collision risk assessment. We present a transformer-based framework for multi-vessel trajectory prediction with integrated collision risk analysis. For a given target vessel, the framework identifies nearby vessels. It jointly predicts their future trajectories through parallel streams encoding kinematic and derived physical features, causal convolutions for temporal locality, spatial transformations for positional encoding, and hybrid positional embeddings that capture both local motion patterns and long-range dependencies. Evaluated on large-scale real-world AIS data using joint multi-vessel metrics, the model demonstrates superior forecasting capabilities beyond traditional single-vessel displacement errors. By simulating interactions among predicted trajectories, the framework further quantifies potential collision risks, offering actionable insights to strengthen maritime safety and decision support.
- Abstract(参考訳): 正確な血管軌道予測は、状況認識を高め、衝突を防止するために不可欠である。
それでも、既存のデータ駆動モデルは、主に単一容器予測、船舶の相互作用を見渡すこと、ナビゲーションルール、明示的な衝突リスク評価に制約されている。
衝突リスク解析を統合した多容器軌道予測のための変圧器ベースのフレームワークを提案する。
特定の標的艦艇について、この枠組みは近くの艦船を識別する。
運動と引き起こされた物理的特徴、時間的局所性のための因果的畳み込み、位置的エンコーディングのための空間的変換、局所的な動きパターンと長距離依存の両方をキャプチャするハイブリッドな位置埋め込みを通じて、彼らの将来の軌跡を共同で予測する。
ジョイントマルチコンテナメトリクスを用いた大規模実世界のAISデータに基づいて評価し、従来の単一容器変位誤差よりも優れた予測能力を示す。
予測された軌道間の相互作用をシミュレートすることで、この枠組みはさらに潜在的な衝突リスクを定量化し、海上安全と意思決定支援を強化するための実用的な洞察を提供する。
関連論文リスト
- Adaptive Conformal Prediction Intervals Over Trajectory Ensembles [50.31074512684758]
将来の軌道は、自律運転、ハリケーン予測、疫病モデルといった領域で重要な役割を果たしている。
本稿では,サンプル軌道を理論的カバレッジ保証付き校正された予測区間に変換する共形予測に基づく統一的なフレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-18T21:14:07Z) - Visual Trajectory Prediction of Vessels for Inland Navigation [42.81677042059531]
本研究では,高度な物体検出手法を統合することで,映像に基づく容器追跡と予測の課題に対処する。
BoT-SORT、Deep OC-SORT、ByeTrackなどの追跡アルゴリズムの比較評価では、スムーズなトラジェクトリを提供する際のカルマンフィルタの堅牢性を強調している。
この結果は、内陸航法のためのカスタマイズされたデータセットとモデルの必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2025-05-01T15:31:15Z) - STGDPM:Vessel Trajectory Prediction with Spatio-Temporal Graph Diffusion Probabilistic Model [0.0]
船舶軌道予測は、海上交通の安全を確保し、衝突を避けるために重要な要素である。
船舶の挙動に固有の不確実性があるため、軌道予測システムは将来的な運動状態を正確にモデル化するためのマルチモーダルなアプローチを採用する必要がある。
本稿では, 容器の状態に依存する従来の集約型手法を置き換え, 動的グラフとしての相互作用のモデル化を提案する。
論文 参考訳(メタデータ) (2025-03-11T05:50:27Z) - Navigation under uncertainty: Trajectory prediction and occlusion reasoning with switching dynamical systems [36.18758962312406]
構造的確率的生成モデルに基づく軌道予測とオクルージョン推論を統一する概念的枠組みを提案する。
次に、オープンデータセットを使用して、その能力を示すいくつかの初期実験を示す。
論文 参考訳(メタデータ) (2024-10-14T16:03:41Z) - DiffuTraj: A Stochastic Vessel Trajectory Prediction Approach via Guided Diffusion Process [23.42712306116432]
船の操縦は、その固有の複雑さと不確定性によって特徴づけられ、船舶の軌道予測システムを必要とする。
従来の軌道予測法では, 容器運動の多モード性を表現するために潜伏変数を用いる。
我々は,不確実性から確実性への血管運動の遷移を明示的にシミュレートする。
論文 参考訳(メタデータ) (2024-10-12T14:50:18Z) - Neural Interaction Energy for Multi-Agent Trajectory Prediction [55.098754835213995]
ニューラル・インタラクション・エナジー(MATE)によるマルチエージェント軌道予測(Multi-Agent Trajectory Prediction)というフレームワークを導入する。
MATEは神経相互作用エネルギーを用いてエージェントの対話運動を評価する。
時間的安定性を高めるために,エージェント間相互作用制約とエージェント内動作制約という2つの制約を導入する。
論文 参考訳(メタデータ) (2024-04-25T12:47:47Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - A Hierarchical Hybrid Learning Framework for Multi-agent Trajectory
Prediction [4.181632607997678]
深層学習(DL)と強化学習(RL)の階層的ハイブリッドフレームワークを提案する。
DLの段階では、トラフィックシーンは、トランスフォーマースタイルのGNNが異種相互作用を符号化するために採用される複数の中間スケールの異種グラフに分割される。
RLの段階では、DLの段階で予測される重要な将来点を利用して、交通シーンを局所的なサブシーンに分割する。
論文 参考訳(メタデータ) (2023-03-22T02:47:42Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
渋滞パターンを明示的に学習し、新しい「センス--学習--Reason--予測」フレームワークを考案する。
学習段階を2段階に分解することで、「学生」は「教師」から文脈的手がかりを学習し、衝突のない軌跡を生成する。
実験では,提案モデルが合成データセットにおいて衝突のない軌道予測を生成できることを実証する。
論文 参考訳(メタデータ) (2021-03-26T02:42:33Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。