論文の概要: Beyond Linearity and Time-homogeneity: Relational Hyper Event Models with Time-Varying Non-Linear Effects
- arxiv url: http://arxiv.org/abs/2509.05289v2
- Date: Mon, 08 Sep 2025 06:53:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:03.417738
- Title: Beyond Linearity and Time-homogeneity: Relational Hyper Event Models with Time-Varying Non-Linear Effects
- Title(参考訳): 線形性と時間均一性を超えて:時変非線形効果を持つ関係性ハイパーイベントモデル
- Authors: Martina Boschi, Jürgen Lerner, Ernst C. Wit,
- Abstract要約: よりフレキシブルなモデルを導入し、統計の影響を非線形かつ経時的に変化させることができるようにします。
このアプローチは、ハイパーイベントを駆動する動的要因に関する深い洞察を与え、潜在的にモノトニックでないパターンを評価することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent technological advances have made it easier to collect large and complex networks of time-stamped relational events connecting two or more entities. Relational hyper-event models (RHEMs) aim to explain the dynamics of these events by modeling the event rate as a function of statistics based on past history and external information. However, despite the complexity of the data, most current RHEM approaches still rely on a linearity assumption to model this relationship. In this work, we address this limitation by introducing a more flexible model that allows the effects of statistics to vary non-linearly and over time. While time-varying and non-linear effects have been used in relational event modeling, we take this further by modeling joint time-varying and non-linear effects using tensor product smooths. We validate our methodology on both synthetic and empirical data. In particular, we use RHEMs to study how patterns of scientific collaboration and impact evolve over time. Our approach provides deeper insights into the dynamic factors driving relational hyper-events, allowing us to evaluate potential non-monotonic patterns that cannot be identified using linear models.
- Abstract(参考訳): 近年の技術進歩により、2つ以上のエンティティを接続する時間スタンプ付きリレーショナルイベントの大規模かつ複雑なネットワークの収集が容易になった。
リレーショナル・ハイパーイベントモデル(RHEM)は、過去の履歴と外部情報に基づく統計の関数としてイベントレートをモデル化することで、これらの事象のダイナミクスを説明することを目的としている。
しかし、データの複雑さにもかかわらず、現在のRHEMアプローチのほとんどは、この関係をモデル化するための線形性仮定に依存している。
本研究では、この制限に、統計の影響を非線形かつ経時的に変化させる、より柔軟なモデルを導入することで対処する。
時間変化および非線形効果は関係事象モデリングに使われてきたが、テンソル積スムースを用いた連立時間変化および非線形効果をモデル化することによってさらに発展する。
我々は合成データと経験データの両方で方法論を検証した。
特に、RHEMを使用して、科学的コラボレーションと影響のパターンが時間とともにどのように進化するかを研究する。
提案手法は, 線形モデルでは識別できない潜在的な非単調パターンを評価できるため, 関係性ハイパーイベントを駆動する動的因子について深い洞察を与える。
関連論文リスト
- Multi-Head Self-Attending Neural Tucker Factorization [5.734615417239977]
本稿では,高次元および不完全(HDI)テンソルの学習表現に適したニューラルネットワークに基づくテンソル分解手法を提案する。
提案したMSNTucFモデルでは,観測結果の欠落を推定する上で,最先端のベンチマークモデルと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2025-01-16T13:04:15Z) - TS-CausalNN: Learning Temporal Causal Relations from Non-linear Non-stationary Time Series Data [0.42156176975445486]
本稿では,時系列因果ニューラルネットワーク(TS-Causal Neural Network,TS-CausalNN)を提案する。
単純な並列設計に加えて、提案モデルの利点は、データの非定常性と非線形性を自然に扱うことである。
論文 参考訳(メタデータ) (2024-04-01T20:33:29Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFunモデルは、累積分布関数(CDF)を中心に回転するTPPに対する新しいアプローチを表す
提案手法は従来のTPPモデリングに固有のいくつかの重要な問題に対処する。
コントリビューションには、先駆的なCDFベースのTPPモデルの導入、過去の事象情報を将来の事象予測に組み込む方法論の開発が含まれている。
論文 参考訳(メタデータ) (2024-02-01T07:21:30Z) - Discovering Mixtures of Structural Causal Models from Time Series Data [23.18511951330646]
基礎となる因果モデルを推測するために, MCD と呼ばれる一般的な変分推論に基づくフレームワークを提案する。
このアプローチでは、データ可能性のエビデンス-ローバウンドを最大化するエンドツーエンドのトレーニングプロセスを採用しています。
本研究では,本手法が因果発見タスクにおける最先端のベンチマークを上回ることを実証する。
論文 参考訳(メタデータ) (2023-10-10T05:13:10Z) - Enhancing Asynchronous Time Series Forecasting with Contrastive
Relational Inference [21.51753838306655]
時間点プロセス(TPP)は、そのようなモデリングの標準的な方法である。
既存のTPPモデルは、イベントの相互作用を明示的にモデル化する代わりに、将来のイベントの条件分布に焦点を当てており、イベント予測の課題を示唆している。
本稿では,ニューラル推論(NRI)を利用して,観測データから動的パターンを同時に学習しながら,相互作用を推論するグラフを学習する手法を提案する。
論文 参考訳(メタデータ) (2023-09-06T09:47:03Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
まず,CNNに基づく行動モデルにより捉えたフレーム間の時間的関係を定量化する手法を提案する。
次に、時間的モデリングがどのように影響を受けるかをよりよく理解するために、包括的な実験と詳細な分析を行います。
論文 参考訳(メタデータ) (2022-04-25T19:06:48Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Amortized Causal Discovery: Learning to Infer Causal Graphs from
Time-Series Data [63.15776078733762]
本稿では,時系列データから因果関係を推定する新しいフレームワークであるAmortized Causal Discoveryを提案する。
本研究では,本手法が変分モデルとして実装され,因果発見性能が大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-06-18T19:59:12Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。