論文の概要: A Spatio-Temporal Graph Neural Networks Approach for Predicting Silent Data Corruption inducing Circuit-Level Faults
- arxiv url: http://arxiv.org/abs/2509.06289v1
- Date: Mon, 08 Sep 2025 02:23:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:03.943375
- Title: A Spatio-Temporal Graph Neural Networks Approach for Predicting Silent Data Corruption inducing Circuit-Level Faults
- Title(参考訳): 時空間グラフニューラルネットワークによるサーキットレベル故障の無声データ破壊予測
- Authors: Shaoqi Wei, Senling Wang, Hiroshi Kai, Yoshinobu Higami, Ruijun Ma, Tianming Ni, Xiaoqing Wen, Hiroshi Takahashi,
- Abstract要約: 機能テスト SDE関連の障害をシミュレートするには費用がかかる。
長周期断層衝突確率の高速かつ高精度な予測のための統合時間グラフ畳み込みネットワーク(ST-GCN)を提案する。
- 参考スコア(独自算出の注目度): 5.2974276480448195
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Silent Data Errors (SDEs) from time-zero defects and aging degrade safety-critical systems. Functional testing detects SDE-related faults but is expensive to simulate. We present a unified spatio-temporal graph convolutional network (ST-GCN) for fast, accurate prediction of long-cycle fault impact probabilities (FIPs) in large sequential circuits, supporting quantitative risk assessment. Gate-level netlists are modeled as spatio-temporal graphs to capture topology and signal timing; dedicated spatial and temporal encoders predict multi-cycle FIPs efficiently. On ISCAS-89 benchmarks, the method reduces simulation time by more than 10x while maintaining high accuracy (mean absolute error 0.024 for 5-cycle predictions). The framework accepts features from testability metrics or fault simulation, allowing efficiency-accuracy trade-offs. A test-point selection study shows that choosing observation points by predicted FIPs improves detection of long-cycle, hard-to-detect faults. The approach scales to SoC-level test strategy optimization and fits downstream electronic design automation flows.
- Abstract(参考訳): 時間ゼロの欠陥と経年劣化によるSDE(Silent Data Errors)は、安全クリティカルなシステムを低下させる。
機能テストはSDE関連の欠陥を検出するが、シミュレートは高価である。
本研究では,大規模回路における長周期故障確率(FIP)の高速かつ正確な予測を行うために,一括時空間グラフ畳み込みネットワーク(ST-GCN)を提案する。
ゲートレベルのネットリストは、トポロジと信号タイミングをキャプチャする時空間グラフとしてモデル化され、専用の空間エンコーダと時間エンコーダは、マルチサイクルFIPを効率的に予測する。
ISCAS-89ベンチマークでは、高い精度を維持しながらシミュレーション時間を10倍以上に短縮する(5サイクル予測の絶対誤差0.024)。
このフレームワークは、テスト容易性メトリクスや障害シミュレーションの機能を受け入れ、効率と精度のトレードオフを可能にする。
テストポイント選択実験により、予測されたFIPによる観測点の選択は、長期サイクルのハード・トゥ・ディテクト断層の検出を改善することが示された。
このアプローチは、SoCレベルのテスト戦略最適化にスケールし、下流の電子設計自動化フローに適合する。
関連論文リスト
- Time-Series Learning for Proactive Fault Prediction in Distributed Systems with Deep Neural Structures [5.572536027964037]
本稿では,分散システムにおける障害予測と遅延応答の課題に対処する。
時間とともにシステム状態の進化をモデル化するために、Gated Recurrent Unitを使用します。
次に、注意機構を適用して、重要な時間セグメントを強化し、潜在的な欠陥を識別するモデルの能力を向上させる。
論文 参考訳(メタデータ) (2025-05-27T04:31:12Z) - Error-quantified Conformal Inference for Time Series [55.11926160774831]
時系列予測の不確かさの定量化は、時系列データの時間的依存と分布シフトのために困難である。
量子化損失関数をスムースにすることで,iError-quantified Conformal Inference (ECI)を提案する。
ECIは有効な誤発見制御と、他のベースラインよりも厳密な予測セットを出力することができる。
論文 参考訳(メタデータ) (2025-02-02T15:02:36Z) - MultiPDENet: PDE-embedded Learning with Multi-time-stepping for Accelerated Flow Simulation [48.41289705783405]
マルチスケールタイムステップ(MultiPDENet)を用いたPDE組み込みネットワークを提案する。
特に,有限差分構造に基づく畳み込みフィルタを少数のパラメータで設計し,最適化する。
4階ランゲ・クッタ積分器を微細な時間スケールで備えた物理ブロックが確立され、PDEの構造を埋め込んで予測を導出する。
論文 参考訳(メタデータ) (2025-01-27T12:15:51Z) - Spatial-Temporal Bearing Fault Detection Using Graph Attention Networks and LSTM [0.7864304771129751]
本稿では,グラフ注意ネットワーク(GAT)とLong Short-Term Memory(LSTM)ネットワークを組み合わせた新しい手法を提案する。
このアプローチは、センサデータ内の空間的および時間的依存関係を捕捉し、軸受故障検出の精度を向上させる。
論文 参考訳(メタデータ) (2024-10-15T12:55:57Z) - QBSD: Quartile-Based Seasonality Decomposition for Cost-Effective RAN KPI Forecasting [0.18416014644193066]
我々は、精度と計算複雑性のトレードオフを最適化するために、QBSDというライブシングルステップ予測手法を紹介した。
QBSDは数千セル以上の実ネットワークRANデータセットで大きな成功を収めています。
その結果,提案手法は主要なアルゴリズムに比べて実行効率が優れていることがわかった。
論文 参考訳(メタデータ) (2023-06-09T15:59:27Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
本稿では,集約信号とループ検出データを用いた時系列予測フレームワークを提案する。
我々は、最先端の機械学習モデルを用いて、将来の信号位相の持続時間を予測する。
スイスのチューリッヒの信号制御システムから得られた経験的データに基づいて、機械学習モデルが従来の予測手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-24T07:50:43Z) - GNN4REL: Graph Neural Networks for Predicting Circuit Reliability
Degradation [7.650966670809372]
我々はグラフニューラルネットワーク(GNN)を用いて、プロセスの変動とデバイス老化が回路内の任意の経路の遅延に与える影響を正確に推定する。
GNN4RELは、工業用14nm計測データに対して校正されたFinFET技術モデルに基づいて訓練されている。
我々は、平均絶対誤差を0.01ポイントまで下げて、全経路(特に数秒以内)の遅延劣化をうまく見積もった。
論文 参考訳(メタデータ) (2022-08-04T20:09:12Z) - Design Methodology for Deep Out-of-Distribution Detectors in Real-Time
Cyber-Physical Systems [5.233831361879669]
アウト・オブ・ディストリビューション(OOD)検出器はMLモデルと並行して動作し、フラグ入力は望ましくない結果をもたらす可能性がある。
本研究は,組込みアプリケーションの精度および応答時間要求を満たすため,深部OOD検出器をチューニングするための設計手法を提案する。
論文 参考訳(メタデータ) (2022-07-29T14:06:27Z) - Fast and Accurate Error Simulation for CNNs against Soft Errors [64.54260986994163]
本稿では,誤りシミュレーションエンジンを用いて,コナールニューラルネットワーク(CNN)の信頼性解析のためのフレームワークを提案する。
これらの誤差モデルは、故障によって誘導されるCNN演算子の出力の破損パターンに基づいて定義される。
提案手法は,SASSIFIの欠陥効果の約99%の精度と,限定的なエラーモデルのみを実装した44倍から63倍までのスピードアップを実現する。
論文 参考訳(メタデータ) (2022-06-04T19:45:02Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。