論文の概要: Curia: A Multi-Modal Foundation Model for Radiology
- arxiv url: http://arxiv.org/abs/2509.06830v1
- Date: Mon, 08 Sep 2025 16:04:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:04.232035
- Title: Curia: A Multi-Modal Foundation Model for Radiology
- Title(参考訳): Curia: 放射線学のためのマルチモーダル基礎モデル
- Authors: Corentin Dancette, Julien Khlaut, Antoine Saporta, Helene Philippe, Elodie Ferreres, Baptiste Callard, Théo Danielou, Léo Alberge, Léo Machado, Daniel Tordjman, Julie Dupuis, Korentin Le Floch, Jean Du Terrail, Mariam Moshiri, Laurent Dercle, Tom Boeken, Jules Gregory, Maxime Ronot, François Legou, Pascal Roux, Marc Sapoval, Pierre Manceron, Paul Hérent,
- Abstract要約: 本研究は,大病院の横断画像出力全体に基づいて訓練された基礎モデルであるCuriaを紹介する。
Curiaは臓器を正確に識別し、脳出血や心筋梗塞などの病態を検出し、腫瘍のステージングの結果を予測する。
- 参考スコア(独自算出の注目度): 3.5025024631649857
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: AI-assisted radiological interpretation is based on predominantly narrow, single-task models. This approach is impractical for covering the vast spectrum of imaging modalities, diseases, and radiological findings. Foundation models (FMs) hold the promise of broad generalization across modalities and in low-data settings. However, this potential has remained largely unrealized in radiology. We introduce Curia, a foundation model trained on the entire cross-sectional imaging output of a major hospital over several years, which to our knowledge is the largest such corpus of real-world data-encompassing 150,000 exams (130 TB). On a newly curated 19-task external validation benchmark, Curia accurately identifies organs, detects conditions like brain hemorrhages and myocardial infarctions, and predicts outcomes in tumor staging. Curia meets or surpasses the performance of radiologists and recent foundation models, and exhibits clinically significant emergent properties in cross-modality, and low-data regimes. To accelerate progress, we release our base model's weights at https://huggingface.co/raidium/curia.
- Abstract(参考訳): AIによる放射線学的解釈は、主に狭い単一タスクモデルに基づいている。
このアプローチは、画像モダリティ、疾患、および放射線学的所見の広い範囲をカバーするために実用的ではない。
ファンデーションモデル(FM)は、モダリティと低データ設定において広範な一般化を約束する。
しかし、この可能性はラジオロジーにおいてほとんど実現されていない。
ここ数年にわたって、大病院の横断画像出力全体に基づいて訓練された基礎モデルであるCuriaを紹介した。
新しい19タスクの外部検証ベンチマークでは、Curiaは臓器を正確に識別し、脳出血や心筋梗塞などの病態を検出し、腫瘍のステージングの結果を予測する。
キュリアは放射線学者や最近の基礎モデルのパフォーマンスに適合または超え、クロスモダリティや低データ体制において臨床的に重要な創発性を示す。
進捗を加速するために、ベースモデルの重みをhttps://huggingface.co/raidium/curia.comでリリースします。
関連論文リスト
- Fast-staged CNN Model for Accurate pulmonary diseases and Lung cancer detection [0.0]
本研究は, 肺がん, 特に肺結節の検出を目的とした深層学習モデルと, 胸部X線写真を用いた8つの肺病理組織について検討した。
アンサンブル法とトランスファーラーニングを利用した2段階分類システムを用いて,最初のトリアージ画像を正規あるいは異常に分類する。
このモデルでは、最高の性能の精度は77%、感度は0.713、特異度は0.776、AUCスコアは0.888である。
論文 参考訳(メタデータ) (2024-12-16T11:47:07Z) - MGH Radiology Llama: A Llama 3 70B Model for Radiology [50.42811030970618]
本稿では,高度な放射線学に焦点を当てた大規模言語モデルMGH Radiology Llamaを提案する。
Llama 3 70Bモデルを使用して開発され、Radiology-GPTやRadiology-Llama2といった従来のドメイン固有モデルをベースにしている。
従来の指標とGPT-4に基づく評価の両方を取り入れた評価では,汎用LLMよりも高い性能を示す。
論文 参考訳(メタデータ) (2024-08-13T01:30:03Z) - Generative models of MRI-derived neuroimaging features and associated dataset of 18,000 samples [17.576301478946775]
GenMINDは、構造的脳画像から派生した規範的地域容積特徴の生成モデルである。
成人の寿命(22~90歳)にまたがる18,000の合成サンプルと、無制限のデータを生成するモデルの能力を提供する。
論文 参考訳(メタデータ) (2024-07-17T15:33:10Z) - Advancing human-centric AI for robust X-ray analysis through holistic self-supervised learning [33.9544297423474]
873kの胸部X線で自己監督によって訓練された大型ビジュアルエンコーダであるRayDinoについて紹介する。
我々はレイディーノと過去の9つの放射線学課題における最先端モデルを比較し、分類と密分化からテキスト生成までについて述べる。
以上の結果から,患者中心型AIがX線の臨床・解釈に有用であることが示唆された。
論文 参考訳(メタデータ) (2024-05-02T16:59:10Z) - Uncertainty Quantification in Detecting Choroidal Metastases on MRI via Evolutionary Strategies [0.0]
不確かさの定量化は、放射線学におけるAIの実践的実装を促進する上で重要な役割を担っている。
両眼のMRI画像を用いた単純な畳み込みニューラルネットワーク(CNN)の訓練にDNEを用いた。
その結果,ヒトの放射線技師が評価した主観的特徴は,不確実性が高いイメージを説明できることがわかった。
論文 参考訳(メタデータ) (2024-04-12T23:49:37Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
結核(TB)は世界的な健康上の脅威であり、毎年何百万人もの死者を出している。
深層学習を用いたコンピュータ支援結核診断 (CTD) は有望であるが, 限られたトレーニングデータによって進行が妨げられている。
結核X線(TBX11K)データセットは11,200個の胸部X線(CXR)画像とそれに対応するTB領域のバウンディングボックスアノテーションを含む。
このデータセットは、高品質なCTDのための洗練された検出器のトレーニングを可能にする。
論文 参考訳(メタデータ) (2023-07-06T08:27:48Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Attention U-Net Based Adversarial Architectures for Chest X-ray Lung
Segmentation [0.0]
本稿では,診断パイプラインにおける基礎的,しかし困難な課題である肺分節に対する新しい深層学習手法を提案する。
本手法では, 逆批判モデルとともに, 最先端の完全畳み込みニューラルネットワークを用いる。
これは、患者プロファイルの異なる未確認データセットのCXRイメージによく当てはまり、JSRTデータセットの最終的なDSCRは97.5%に達した。
論文 参考訳(メタデータ) (2020-03-23T14:45:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。