論文の概要: Evaluating the Impact of Adversarial Attacks on Traffic Sign Classification using the LISA Dataset
- arxiv url: http://arxiv.org/abs/2509.06835v1
- Date: Mon, 08 Sep 2025 16:06:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:04.240505
- Title: Evaluating the Impact of Adversarial Attacks on Traffic Sign Classification using the LISA Dataset
- Title(参考訳): LISAデータセットを用いた交通標識分類における敵攻撃の影響評価
- Authors: Nabeyou Tadessa, Balaji Iyangar, Mashrur Chowdhury,
- Abstract要約: 我々は畳み込みニューラルネットワークを訓練し、47の異なる交通標識を分類し、敵の攻撃に対する堅牢性を評価する。
その結果,摂動の大きさが大きくなるにつれて,分類精度は急激に低下した。
本研究は,現実の交通標識認識システムに適した防衛機構の今後の研究の基盤となるものである。
- 参考スコア(独自算出の注目度): 3.010893618491329
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial attacks pose significant threats to machine learning models by introducing carefully crafted perturbations that cause misclassification. While prior work has primarily focused on MNIST and similar datasets, this paper investigates the vulnerability of traffic sign classifiers using the LISA Traffic Sign dataset. We train a convolutional neural network to classify 47 different traffic signs and evaluate its robustness against Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) attacks. Our results show a sharp decline in classification accuracy as the perturbation magnitude increases, highlighting the models susceptibility to adversarial examples. This study lays the groundwork for future exploration into defense mechanisms tailored for real-world traffic sign recognition systems.
- Abstract(参考訳): 敵対的攻撃は、機械学習モデルに重大な脅威をもたらす。
従来,MNISTや類似のデータセットを中心に研究されてきたが,本論文では,LISAトラフィックサインデータセットを用いた交通信号分類器の脆弱性について検討する。
我々は畳み込みニューラルネットワークを訓練し、47の異なる交通標識を分類し、FGSM(Fast Gradient Sign Method)とPGD(Projected Gradient Descent)攻撃に対する堅牢性を評価する。
その結果,摂動の規模が大きくなるにつれて分類精度が著しく低下し,モデルが逆向きの例に感受性を示すことが明らかとなった。
本研究は,現実の交通標識認識システムに適した防衛機構の今後の研究の基盤となるものである。
関連論文リスト
- Exploiting Edge Features for Transferable Adversarial Attacks in Distributed Machine Learning [54.26807397329468]
この研究は、分散ディープラーニングシステムにおいて、これまで見過ごされていた脆弱性を探究する。
中間的特徴をインターセプトする敵は、依然として深刻な脅威となる可能性がある。
本稿では,分散環境に特化して設計されたエクスプロイト戦略を提案する。
論文 参考訳(メタデータ) (2025-07-09T20:09:00Z) - Explainable Machine Learning for Cyberattack Identification from Traffic Flows [5.834276858232939]
トラフィックネットワークを用いて,半現実的な環境下でのサイバー攻撃をシミュレートし,破壊パターンを解析する。
深層学習に基づく異常検出システムを開発し、最も長い停止時間と全ジャム距離が妥協信号の重要な指標であることを実証した。
この作業は、AI駆動のトラフィックセキュリティを強化し、スマートトランスポートシステムの検出精度と信頼性の両方を改善します。
論文 参考訳(メタデータ) (2025-05-02T17:34:14Z) - Undermining Image and Text Classification Algorithms Using Adversarial Attacks [0.0]
本研究は,各種機械学習モデルを訓練し,GANとSMOTEを用いてテキスト分類モデルへの攻撃を目的とした追加データポイントを生成することにより,そのギャップを解消する。
実験の結果,分類モデルの重大な脆弱性が明らかとなった。特に,攻撃後の最上位のテキスト分類モデルの精度が20%低下し,顔認識精度が30%低下した。
論文 参考訳(メタデータ) (2024-11-03T18:44:28Z) - Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
本稿では,セグメント・アプライス・モデル(SAM)から微調整した様々な下流モデルに対する敵攻撃の可能性について検討する。
未知のデータセットを微調整したモデルに対する敵攻撃の有効性を高めるために,ユニバーサルメタ初期化(UMI)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-26T15:04:04Z) - Zero Day Threat Detection Using Metric Learning Autoencoders [3.1965908200266173]
企業ネットワークへのゼロデイ脅威(ZDT)の拡散は、非常にコストがかかる。
ディープラーニング手法は、高度に非線形な振る舞いパターンをキャプチャする能力にとって魅力的な選択肢である。
ここで提示されるモデルは、さらに2つのデータセットでトレーニングされ、評価され、新しいネットワークトポロジに一般化しても、有望な結果を示し続ける。
論文 参考訳(メタデータ) (2022-11-01T13:12:20Z) - Adversarial Attacks on Knowledge Graph Embeddings via Instance
Attribution Methods [8.793721044482613]
リンク予測のための知識グラフ埋め込み(KGE)モデルに対するデータ中毒攻撃について検討する。
これらの攻撃は、テスト時にモデル失敗を引き起こすために、トレーニング時に敵の追加や削除を行う。
本稿では,2つの実体のうちの1つを3つに置き換えて,逆加算を生成する手法を提案する。
論文 参考訳(メタデータ) (2021-11-04T19:38:48Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。