論文の概要: Gaussian Process Regression -- Neural Network Hybrid with Optimized Redundant Coordinates
- arxiv url: http://arxiv.org/abs/2509.08457v1
- Date: Wed, 10 Sep 2025 10:00:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-11 15:16:52.379973
- Title: Gaussian Process Regression -- Neural Network Hybrid with Optimized Redundant Coordinates
- Title(参考訳): ガウス過程回帰-最適化冗長座標を用いたニューラルネットワークハイブリッド
- Authors: Sergei Manzhos, Manabu Ihara,
- Abstract要約: 我々はモンテカルロアルゴリズムを用いてGPRNNの冗長座標を最適化するOpto-GPRNNを提案する。
opt-GPRNNは多層NNに近い表現力を持ち、いくつかのアプリケーションでディープNNの必要性を回避できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, a Gaussian Process Regression - neural network (GPRNN) hybrid machine learning method was proposed, which is based on additive-kernel GPR in redundant coordinates constructed by rules [J. Phys. Chem. A 127 (2023) 7823]. The method combined the expressive power of an NN with the robustness of linear regression, in particular, with respect to overfitting when the number of neurons is increased beyond optimal. We introduce opt-GPRNN, in which the redundant coordinates of GPRNN are optimized with a Monte Carlo algorithm and show that when combined with optimization of redundant coordinates, GPRNN attains the lowest test set error with much fewer terms / neurons and retains the advantage of avoiding overfitting when the number of neurons is increased beyond optimal value. The method, opt-GPRNN possesses an expressive power closer to that of a multilayer NN and could obviate the need for deep NNs in some applications. With optimized redundant coordinates, a dimensionality reduction regime is also possible. Examples of application to machine learning an interatomic potential and materials informatics are given.
- Abstract(参考訳): 近年,ルール[J. Phys. Chem. A 127 (2023) 7823]で構築された冗長座標における加算カーネルGPRに基づく,ガウスプロセス回帰-ニューラルネットワーク(GPRNN)ハイブリッド機械学習手法が提案されている。
この方法は、NNの表現力と線形回帰の頑健さを組み合わせ、特にニューロンの数が最適を超えれば過度に適合する。
我々は,GPRNNの冗長座標をモンテカルロアルゴリズムで最適化するオプトGPRNNを導入し,冗長座標の最適化と組み合わせると,GPRNNはより少ない用語/ニューロンで最小のテストセット誤差を達成でき,ニューロン数が最適値を超えたときに過適合を避ける利点を保っていることを示す。
オプトGPRNNは多層NNに近い表現力を持ち、いくつかのアプリケーションではディープNNの必要性を回避できる。
最適化された冗長座標では、次元の減少レジームも可能である。
機械学習への応用例としては、原子間ポテンシャルと材料情報学がある。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Scalable Mechanistic Neural Networks for Differential Equations and Machine Learning [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
計算時間と空間複雑度はそれぞれ、列長に関して立方体と二次体から線形へと減少する。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Enhancing GNNs Performance on Combinatorial Optimization by Recurrent Feature Update [0.09986418756990156]
本稿では,組合せ最適化(CO)問題を効率よく解くために,GNNのパワーを活用して,QRF-GNNと呼ぶ新しいアルゴリズムを提案する。
QUBO緩和による損失関数の最小化による教師なし学習に依存している。
実験の結果、QRF-GNNは既存の学習ベースアプローチを大幅に上回り、最先端の手法に匹敵することがわかった。
論文 参考訳(メタデータ) (2024-07-23T13:34:35Z) - Regularized Gauss-Newton for Optimizing Overparameterized Neural Networks [2.0072624123275533]
一般化されたガウスニュートン(GGN)最適化法は、曲率推定を解法に組み込む。
本研究では、2層ニューラルネットワークを明示的な正規化で最適化するGGN法について検討する。
論文 参考訳(メタデータ) (2024-04-23T10:02:22Z) - Dynamically configured physics-informed neural network in topology
optimization applications [4.403140515138818]
物理インフォームドニューラルネットワーク(PINN)は、前方問題を解決する際に大量のデータを生成するのを避けることができる。
動的に構成された PINN-based Topology Optimization (DCPINN-TO) 法を提案する。
変位予測と最適化結果の精度は,DCPINN-TO法が効率的かつ効率的であることを示している。
論文 参考訳(メタデータ) (2023-12-12T05:35:30Z) - Separable Gaussian Neural Networks: Structure, Analysis, and Function
Approximations [2.17301816060102]
我々は新しいフィードフォワードネットワーク-分離型ガウスニューラルネットワーク(SGNN)を提案する。
SGNNはガウス関数の分離性を利用して、データを複数の列に分割し、順次並列層にフィードする。
実験により,SGNNはGRBFNNよりも100倍の精度で高速化できることが示された。
論文 参考訳(メタデータ) (2023-08-13T03:54:30Z) - Neural network with optimal neuron activation functions based on
additive Gaussian process regression [0.0]
より柔軟なニューロン活性化機能により、より少ない神経細胞や層を使用でき、表現力を向上させることができる。
加算ガウス過程回帰(GPR)は各ニューロンに特異的な最適なニューロン活性化関数を構築するのに有効であることを示す。
ニューラルネットワークパラメータの非線形フィッティングを回避するアプローチも導入されている。
論文 参考訳(メタデータ) (2023-01-13T14:19:17Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
本稿では,任意の数のランダム接続ノードを持つ無線ネットワークにおいて,分散最適化タスクに取り組む機械学習戦略を提案する。
我々は,ネットワークトポロジとは無関係に,前方および後方に計算を行う分散メッセージパスニューラルネットワーク(DMPNN)と呼ばれる,柔軟な深層ニューラルネットワーク形式を開発した。
論文 参考訳(メタデータ) (2021-06-15T09:03:28Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
ディープニューラルネットワーク(DNN)は通常、勾配降下による最適化に数千のイテレーションを要します。
非次最適化に基づく新しい多様体ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-15T06:39:13Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
本稿では,ローカルラデマチャー複雑性を用いたニューラルネットワークの正規化のための新しい手法であるLocalDropを提案する。
フルコネクテッドネットワーク(FCN)と畳み込みニューラルネットワーク(CNN)の両方のための新しい正規化機能は、ローカルラデマチャー複雑さの上限提案に基づいて開発されました。
論文 参考訳(メタデータ) (2021-03-01T03:10:11Z) - Optimal Rates for Averaged Stochastic Gradient Descent under Neural
Tangent Kernel Regime [50.510421854168065]
平均勾配勾配勾配は極小収束率が得られることを示す。
本稿では、ReLUネットワークのNTKで指定されたターゲット関数を最適収束速度で学習できることを示す。
論文 参考訳(メタデータ) (2020-06-22T14:31:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。