論文の概要: Representation-Aware Distributionally Robust Optimization: A Knowledge Transfer Framework
- arxiv url: http://arxiv.org/abs/2509.09371v1
- Date: Thu, 11 Sep 2025 11:42:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-12 16:52:24.362446
- Title: Representation-Aware Distributionally Robust Optimization: A Knowledge Transfer Framework
- Title(参考訳): 表現型分散ロバスト最適化:知識伝達フレームワーク
- Authors: Zitao Wang, Nian Si, Molei Liu,
- Abstract要約: 本稿では,分散シフトに対処する際の予測表現を考慮に入れた,分散的ロバスト学習のための新しいフレームワークを提案する。
我々は,READが輸送コストに多次元アライメントパラメータを埋め込むことで,情報表現に関連する方向に沿った摂動を差分的に回避できることを示した。
我々は、広範囲なシミュレーションと実世界の研究を通して、我々のフレームワークの有効性を実証することで結論付ける。
- 参考スコア(独自算出の注目度): 6.529107536201152
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose REpresentation-Aware Distributionally Robust Estimation (READ), a novel framework for Wasserstein distributionally robust learning that accounts for predictive representations when guarding against distributional shifts. Unlike classical approaches that treat all feature perturbations equally, READ embeds a multidimensional alignment parameter into the transport cost, allowing the model to differentially discourage perturbations along directions associated with informative representations. This yields robustness to feature variation while preserving invariant structure. Our first contribution is a theoretical foundation: we show that seminorm regularizations for linear regression and binary classification arise as Wasserstein distributionally robust objectives, thereby providing tractable reformulations of READ and unifying a broad class of regularized estimators under the DRO lens. Second, we adopt a principled procedure for selecting the Wasserstein radius using the techniques of robust Wasserstein profile inference. This further enables the construction of valid, representation-aware confidence regions for model parameters with distinct geometric features. Finally, we analyze the geometry of READ estimators as the alignment parameters vary and propose an optimization algorithm to estimate the projection of the global optimum onto this solution surface. This procedure selects among equally robust estimators while optimally constructing a representation structure. We conclude by demonstrating the effectiveness of our framework through extensive simulations and a real-world study, providing a powerful robust estimation grounded in learning representation.
- Abstract(参考訳): 本稿では,分散シフトに対処する際の予測表現を考慮に入れた分散ロバスト学習のための新しいフレームワークであるRepresentation-Aware Distributionally Robust Estimation (READ)を提案する。
すべての特徴摂動を等しく扱う古典的なアプローチとは異なり、READは多次元アライメントパラメータを輸送コストに埋め込んで、情報表現に関連する方向に沿った摂動を微分的に阻止する。
これにより、不変構造を保ちながら特徴変動に対して堅牢性が得られる。
線形回帰と二項分類の半ノルム正則化は、ワッサーシュタインの分布的ロバストな目的として生じ、READのトラクタブルな再構成とDROレンズの下での広範な正規化推定器の統一を与える。
第2に、ロバストなワッサーシュタインプロファイル推論手法を用いて、ワッサーシュタイン半径を選択するための原理的手順を採用する。
これにより、異なる幾何学的特徴を持つモデルパラメータに対する有効な表現対応信頼領域の構築が可能になる。
最後に、アライメントパラメータの異なるREAD推定器の幾何を解析し、この解面への大域的最適の予測を推定する最適化アルゴリズムを提案する。
この手順は、表現構造を最適に構築しながら、等しく頑健な推定子の中から選択する。
本研究では,大規模なシミュレーションと実世界の研究を通じて,学習表現に基づく強力なロバストな評価を提供することで,フレームワークの有効性を実証する。
関連論文リスト
- Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
独自の予測と潜在的にノイズの多いラベルを使ってモデルをトレーニングすることは、モデルパフォーマンスを改善するためのよく知られた戦略である。
本稿では,モデルの予測と提供ラベルを最適に組み合わせる方法について論じる。
我々の主な貢献は、現在のモデルの予測と与えられたラベルを組み合わせたベイズ最適集約関数の導出である。
論文 参考訳(メタデータ) (2025-05-21T07:16:44Z) - Stochastic Optimization with Optimal Importance Sampling [49.484190237840714]
本稿では,両者の時間的分離を必要とせずに,意思決定とIS分布を共同で更新する反復型アルゴリズムを提案する。
本手法は,IS分布系に対する目的的,軽度な仮定の凸性の下で,最小の変数分散を達成し,大域収束を保証する。
論文 参考訳(メタデータ) (2025-04-04T16:10:18Z) - Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions [22.765095010254118]
本研究の目的は分散ロバストな最適化 (DRO) 推定器の開発であり、特に多次元極値理論 (EVT) の統計量についてである。
点過程の空間における半パラメトリックな最大安定制約によって予測されるDRO推定器について検討した。
両手法は, 合成データを用いて検証し, 所定の特性を回復し, 提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-07-31T19:45:27Z) - Distributionally and Adversarially Robust Logistic Regression via Intersecting Wasserstein Balls [8.720733751119994]
提案手法は,提案手法が標準データセットのベンチマーク手法よりも優れていることを示す。
前者からインスピレーションを得て、ロジスティック回帰のためにAROのワッサーシュタイン DR について検討し、トラクタブル凸最適化の修正が認められることを示す。
論文 参考訳(メタデータ) (2024-07-18T15:59:37Z) - Contextual Optimization under Covariate Shift: A Robust Approach by Intersecting Wasserstein Balls [18.047245099229325]
We propose a novel approach called Intersection Wasserstein-balls DRO (IW-DRO)。
IW-DROは分散ロバストな最適化フレームワークに複数の推定手法を統合する。
IW-DROは単一のWarsserstein-ball DROモデルと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2024-06-04T15:46:41Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
我々は,非平均場(NMF)変動推定フレームワークにアンサンブルカルマンフィルタ(EnKF)を導入し,潜在状態の後方分布を近似する。
EnKFとGPSSMのこの新しい結婚は、変分分布の学習における広範なパラメータ化の必要性をなくすだけでなく、エビデンスの下限(ELBO)の解釈可能でクローズドな近似を可能にする。
得られたEnKF支援オンラインアルゴリズムは、データ適合精度を確保しつつ、モデル正規化を組み込んで過度適合を緩和し、目的関数を具現化する。
論文 参考訳(メタデータ) (2023-12-10T15:22:30Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
経験値関数の新しい正規化器を導入し、ワッサーシュタイン分布のロバストな値関数を下限とすることを示す。
強化学習における$textitexternalな不確実性に対処するための実用的なツールとして正規化を使用することを提案する。
論文 参考訳(メタデータ) (2020-03-05T19:56:23Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
本稿では,対象空間が高次元な純粋教師付き環境における一般化の枠組みを解析する。
我々は、教師付き予測のための目標埋め込みオートエンコーダ(TEA)の一般的なフレームワークのモチベーションと形式化を行い、特徴とターゲットの予測の両方から予測可能なように最適化された中間潜在表現を学習する。
論文 参考訳(メタデータ) (2020-01-23T02:37:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。