論文の概要: Contextual Optimization under Covariate Shift: A Robust Approach by Intersecting Wasserstein Balls
- arxiv url: http://arxiv.org/abs/2406.02426v2
- Date: Wed, 25 Jun 2025 15:43:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-26 21:00:42.416244
- Title: Contextual Optimization under Covariate Shift: A Robust Approach by Intersecting Wasserstein Balls
- Title(参考訳): 共変量シフト下における文脈最適化:ワッサースタイン球交差によるロバストなアプローチ
- Authors: Tianyu Wang, Ningyuan Chen, Chun Wang,
- Abstract要約: We propose a novel approach called Intersection Wasserstein-balls DRO (IW-DRO)。
IW-DROは分散ロバストな最適化フレームワークに複数の推定手法を統合する。
IW-DROは単一のWarsserstein-ball DROモデルと比較して優れた性能を示す。
- 参考スコア(独自算出の注目度): 18.047245099229325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In contextual optimization, a decision-maker leverages contextual information, often referred to as covariates, to better resolve uncertainty and make informed decisions. In this paper, we examine the challenges of contextual decision-making under covariate shift, a phenomenon where the distribution of covariates differs between the training and test environments. Such shifts can lead to inaccurate upstream estimations for test covariates that lie far from the training data, ultimately resulting in suboptimal downstream decisions. To tackle these challenges, we propose a novel approach called Intersection Wasserstein-balls DRO (IW-DRO), which integrates multiple estimation methods into the distributionally robust optimization (DRO) framework. At the core of our approach is an innovative ambiguity set defined as the intersection of two Wasserstein balls, with their centers constructed using appropriate nonparametric and parametric estimators. On the computational side, we reformulate the IW-DRO problem as a tractable convex program and develop an approximate algorithm tailored for large-scale problems to enhance computational efficiency. From a theoretical perspective, we demonstrate that IW-DRO achieves superior performance compared to single Wasserstein-ball DRO models. We further establish performance guarantees by analyzing the coverage of the intersection ambiguity set and the measure concentration of both estimators under the Wasserstein distance. Notably, we derive a finite-sample concentration result for the Nadaraya-Watson kernel estimator under covariate shift. The proposed IW-DRO framework offers practical value for decision-makers operating in uncertain environments affected by covariate shifts.
- Abstract(参考訳): 文脈最適化において、意思決定者は文脈情報(しばしば共変量と呼ばれる)を活用し、不確実性をよりよく解決し、情報的決定を行う。
本稿では,共変量分布が学習環境とテスト環境で異なる現象である共変量シフト下での文脈決定の課題について検討する。
このようなシフトは、トレーニングデータから遠く離れたテスト共変量に対するアップストリーム推定の正確さを損なう可能性がある。
これらの課題に対処するために,複数推定手法を分散ロバスト最適化(DRO)フレームワークに統合したIntersection Wasserstein-balls DRO (IW-DRO) という新しい手法を提案する。
我々のアプローチの中核は、2つのワッサーシュタイン球の交叉として定義される革新的曖昧性集合であり、その中心は適切な非パラメトリックおよびパラメトリック推定器を用いて構成されている。
計算面では、IW-DRO問題をトラクタブル凸プログラムとして再構成し、大規模問題に適した近似アルゴリズムを開発し、計算効率を向上させる。
理論的な観点から、IW-DROは単一のWarsserstein-ball DROモデルと比較して優れた性能を示す。
さらに、交差あいまい度セットのカバレッジと、ワッサーシュタイン距離下での両推定器の測定濃度を解析することにより、性能保証を確立する。
特に、共変量シフトの下でのナダラヤ-ワトソン核推定器に対する有限サンプル濃度の結果を導出する。
提案したIW-DROフレームワークは,共変量シフトの影響を受けない環境下で動作している意思決定者に対して,実用的な価値を提供する。
関連論文リスト
- Stochastic Optimization with Optimal Importance Sampling [49.484190237840714]
本稿では,両者の時間的分離を必要とせずに,意思決定とIS分布を共同で更新する反復型アルゴリズムを提案する。
本手法は,IS分布系に対する目的的,軽度な仮定の凸性の下で,最小の変数分散を達成し,大域収束を保証する。
論文 参考訳(メタデータ) (2025-04-04T16:10:18Z) - Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
最近の構造化学習手法のストリームは、様々な最適化問題に対する技術の実践的状態を改善している。
鍵となる考え方は、インスタンスを別々に扱うのではなく、インスタンス上の統計分布を利用することだ。
本稿では,最適化を容易にし,一般化誤差を改善するポリシを摂動することでリスクを円滑にする手法について検討する。
論文 参考訳(メタデータ) (2024-07-24T12:00:30Z) - A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
制約的な仮定を課さずに共分散推定器を構築するための原理的手法を提案する。
頑健な推定器は効率的に計算可能で一貫したものであることを示す。
合成および実データに基づく数値実験により、我々の頑健な推定器は最先端の推定器と競合していることが示された。
論文 参考訳(メタデータ) (2024-05-30T15:01:18Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - An Inexact Halpern Iteration with Application to Distributionally Robust
Optimization [9.529117276663431]
決定論的および決定論的収束設定におけるスキームの不正確な変種について検討する。
不正確なスキームを適切に選択することにより、(予想される)剰余ノルムの点において$O(k-1)収束率を許容することを示す。
論文 参考訳(メタデータ) (2024-02-08T20:12:47Z) - Wasserstein Distributionally Robust Estimation in High Dimensions:
Performance Analysis and Optimal Hyperparameter Tuning [0.0]
雑音線形測定から未知パラメータを推定するための分布的ロバストな推定フレームワークを提案する。
このような推定器の2乗誤差性能を解析する作業に着目する。
凸凹最適化問題の解法として2乗誤差を復元できることを示す。
論文 参考訳(メタデータ) (2022-06-27T13:02:59Z) - A Short and General Duality Proof for Wasserstein Distributionally Robust Optimization [11.034091190797671]
本稿では, 関東ロビッチ輸送コスト, 測定可能な損失関数, および有意な確率分布を抑えるような, 分散的ロバストな最適化のための一般化双対性結果を提案する。
我々は、ある可測射影と弱い可測選択条件が満たされている場合にのみ、交換可能性原理が成立することを示した。
論文 参考訳(メタデータ) (2022-04-30T22:49:01Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
変分推論(VI)はベイズ推論における正確なサンプリングの代替として人気がある。
重要度サンプリング(IS)は、ベイズ近似推論手順の推定を微調整し、偏りを逸脱するためにしばしば用いられる。
近似ベイズ推論のための最適化手法とサンプリング手法の新たな組み合わせを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:00:24Z) - Distributionally Robust Prescriptive Analytics with Wasserstein Distance [10.475438374386886]
本稿では、ワッサーシュタイン曖昧性集合の下での新しい分布的ロバストなアプローチを提案する。
固有分布は、ワッサーシュタイン距離の下での実際の条件分布に収束することを示す。
論文 参考訳(メタデータ) (2021-06-10T13:08:17Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
多くの機械学習シナリオにおけるデフォルトの前提は、トレーニングとテストサンプルは同じ確率分布から引き出されることである。
予測モデルと関連する重みを1つの最適化で共同で学習する新しいワンステップアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-08T11:35:47Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
我々はヘッセン語の形成が計算的に困難であり、通信がボトルネックとなる分散最適化問題を考察する。
我々は、ヘッセンのサンプリングとスケッチを用いたランダム化二階最適化のための非バイアスパラメータ平均化手法を開発した。
また、不均一なコンピューティングシステムのための非バイアス分散最適化フレームワークを導入するために、二階平均化手法のフレームワークを拡張した。
論文 参考訳(メタデータ) (2020-02-16T09:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。