論文の概要: Identifiable Autoregressive Variational Autoencoders for Nonlinear and Nonstationary Spatio-Temporal Blind Source Separation
- arxiv url: http://arxiv.org/abs/2509.11962v1
- Date: Mon, 15 Sep 2025 14:17:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-16 17:26:23.330886
- Title: Identifiable Autoregressive Variational Autoencoders for Nonlinear and Nonstationary Spatio-Temporal Blind Source Separation
- Title(参考訳): 非線形及び非定常時空間ブラインド音源分離のための自己回帰変分オートエンコーダの同定
- Authors: Mika Sipilä, Klaus Nordhausen, Sara Taskinen,
- Abstract要約: 本研究では,非定常自己回帰プロセスからなる潜伏成分の識別性を保証する自己回帰変分オートエンコーダを提案する。
ブラインドソース分離法は,最先端の手法と比較したシミュレーション研究を通じて実証される。
- 参考スコア(独自算出の注目度): 0.5826067772742104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The modeling and prediction of multivariate spatio-temporal data involve numerous challenges. Dimension reduction methods can significantly simplify this process, provided that they account for the complex dependencies between variables and across time and space. Nonlinear blind source separation has emerged as a promising approach, particularly following recent advances in identifiability results. Building on these developments, we introduce the identifiable autoregressive variational autoencoder, which ensures the identifiability of latent components consisting of nonstationary autoregressive processes. The blind source separation efficacy of the proposed method is showcased through a simulation study, where it is compared against state-of-the-art methods, and the spatio-temporal prediction performance is evaluated against several competitors on air pollution and weather datasets.
- Abstract(参考訳): 多変量時空間データのモデル化と予測には多くの課題が伴う。
次元還元法は、変数と時間と空間の間の複雑な依存関係を考慮すれば、このプロセスを著しく単純化することができる。
非線形ブラインドソース分離は有望なアプローチとして現れており、特に近年の識別可能性が向上している。
これらの発展を基盤として,非定常自己回帰プロセスからなる潜伏成分の識別性を保証する自己回帰変分オートエンコーダを提案する。
提案手法のブラインドソース分離の有効性をシミュレーションにより明らかにし, 現状の手法と比較し, 大気汚染および気象データセットに関するいくつかの競合相手に対して時空間予測性能を評価した。
関連論文リスト
- Amortized Posterior Sampling with Diffusion Prior Distillation [55.03585818289934]
Amortized Posterior Smplingは、逆問題における効率的な後方サンプリングのための新しい変分推論手法である。
本手法は,拡散モデルにより暗黙的に定義された変動分布と後続分布とのばらつきを最小限に抑えるために条件付き流れモデルを訓練する。
既存の手法とは異なり、我々のアプローチは教師なしであり、ペア化されたトレーニングデータを必要としておらず、ユークリッドと非ユークリッドの両方のドメインに適用できる。
論文 参考訳(メタデータ) (2024-07-25T09:53:12Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
時間的因果表現学習は時系列観測から潜在因果過程を特定することを目的としている。
ほとんどの方法は、潜在因果過程が即時関係を持たないという仮定を必要とする。
我々は,インスタントtextbfOus textbfLatent dynamics のための textbfIDentification フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:08:05Z) - Causal Inference from Slowly Varying Nonstationary Processes [2.3072402651280517]
観測データヒンジからの因果推論は、データ生成機構による原因と効果の非対称性に依存する。
本稿では,時間変化フィルタと定常雑音を用いた新しい構造因果モデルを提案し,非定常性から非対称性を利用して因果同定を行う。
論文 参考訳(メタデータ) (2024-05-11T04:15:47Z) - Variational quantization for state space models [3.9762742923544456]
何千もの異種時系列を収集する大規模なデータセットを用いてタスクを予測することは、多くの分野において重要な統計問題である。
離散状態空間隠蔽マルコフモデルと最近のニューラルネットワークアーキテクチャを組み合わせた新しい予測モデルを提案し,ベクトル量子化変分オートエンコーダにインスパイアされたトレーニング手順を提案する。
提案手法の性能を複数のデータセットを用いて評価し,他の最先端ソリューションよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-04-17T07:01:41Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
量子回帰に基づくタスクネットワークのアンサンブルを用いて不確実性を推定する新しい手法であるQuantile Sub-Ensemblesを提案する。
提案手法は,高い損失率に頑健な高精度な計算法を生成するだけでなく,非生成モデルの高速な学習により,計算効率も向上する。
論文 参考訳(メタデータ) (2023-12-03T05:52:30Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - Learning Temporally Causal Latent Processes from General Temporal Data [22.440008291454287]
それらの非線形混合物から時間的因果潜在過程を同定できる2つの証明可能な条件を提案する。
種々のデータセットに対する実験結果から, 時間的因果潜在過程が観測変数から確実に同定されることが示された。
論文 参考訳(メタデータ) (2021-10-11T17:16:19Z) - Deep Switching Auto-Regressive Factorization:Application to Time Series
Forecasting [16.934920617960085]
DSARFは、時間依存重みと空間依存因子の間の積変数による高次元データを近似する。
DSARFは、深い切替ベクトル自己回帰因子化の観点から重みをパラメータ化するという最先端技術とは異なる。
本実験は, 最先端手法と比較して, DSARFの長期的, 短期的予測誤差において優れた性能を示すものである。
論文 参考訳(メタデータ) (2020-09-10T20:15:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。