論文の概要: Floating-Body Hydrodynamic Neural Networks
- arxiv url: http://arxiv.org/abs/2509.13783v1
- Date: Wed, 17 Sep 2025 07:51:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-18 18:41:50.770144
- Title: Floating-Body Hydrodynamic Neural Networks
- Title(参考訳): フローティング・ボディ・ダイナミック・ニューラルネット
- Authors: Tianshuo Zhang, Wenzhe Zhai, Rui Yann, Jia Gao, He Cao, Xianglei Xing,
- Abstract要約: 本研究では, 方向付加質量, ドラッグ係数, 流路関数に基づく流れなどの解釈可能なパラメータを予測し, 解析的な運動方程式と結合する物理構造フレームワークを提案する。
ハミルトンニューラルネットワークやラグランジアンニューラルネットワークと比較して、FHNNは、ブラックボックス学習と透明システム識別のギャップを埋める解釈可能性を維持しながら、散逸ダイナミクスをより効果的に扱う。
- 参考スコア(独自算出の注目度): 8.501171043928354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fluid-structure interaction is common in engineering and natural systems, where floating-body motion is governed by added mass, drag, and background flows. Modeling these dissipative dynamics is difficult: black-box neural models regress state derivatives with limited interpretability and unstable long-horizon predictions. We propose Floating-Body Hydrodynamic Neural Networks (FHNN), a physics-structured framework that predicts interpretable hydrodynamic parameters such as directional added masses, drag coefficients, and a streamfunction-based flow, and couples them with analytic equations of motion. This design constrains the hypothesis space, enhances interpretability, and stabilizes integration. On synthetic vortex datasets, FHNN achieves up to an order-of-magnitude lower error than Neural ODEs, recovers physically consistent flow fields. Compared with Hamiltonian and Lagrangian neural networks, FHNN more effectively handles dissipative dynamics while preserving interpretability, which bridges the gap between black-box learning and transparent system identification.
- Abstract(参考訳): 流体構造相互作用は工学や自然システムにおいて一般的であり、浮動体の動きは質量、抗力、背景の流れによって制御される。
ブラックボックスニューラルモデルは、限定的な解釈可能性と不安定な長距離予測を持つ状態デリバティブを回帰する。
FHNN(Floating-Body Hydrodynamic Neural Networks)は,方向付加質量やドラッグ係数,ストリーム関数に基づく流れなどの解釈可能な流体力学パラメータを予測し,解析式と組み合わせた物理構造体である。
この設計は仮説空間を制約し、解釈可能性を高め、積分を安定化させる。
合成渦データセットでは、FHNNはNeural ODEよりも精度の低いオーダー・オブ・マグニチュードを達成し、物理的に一貫した流れ場を回復する。
ハミルトンニューラルネットワークやラグランジアンニューラルネットワークと比較して、FHNNは、ブラックボックス学習と透明システム識別のギャップを埋める解釈可能性を維持しながら、散逸ダイナミクスをより効果的に扱う。
関連論文リスト
- Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
逐次変分自動エンコーダであるLangevinFlowを導入し、潜伏変数の時間的進化をアンダーダム化したLangevin方程式で制御する。
われわれのアプローチは、慣性、減衰、学習されたポテンシャル関数、力などの物理的事前を組み込んで、ニューラルネットワークにおける自律的および非自律的プロセスの両方を表現する。
本手法は,ロレンツ誘引器によって生成される合成神経集団に対する最先端のベースラインより優れる。
論文 参考訳(メタデータ) (2025-07-15T17:57:48Z) - KITINet: Kinetics Theory Inspired Network Architectures with PDE Simulation Approaches [43.872190335490515]
本稿では,非平衡粒子動力学のレンズによる特徴伝播を再解釈する新しいアーキテクチャKITINetを紹介する。
そこで本研究では,粒子系の進化をモデルとした残留モジュールを提案する。
この定式化は粒子衝突とエネルギー交換を模倣し、物理インフォームド相互作用による適応的特徴改善を可能にする。
論文 参考訳(メタデータ) (2025-05-23T13:58:29Z) - Neural SPH: Improved Neural Modeling of Lagrangian Fluid Dynamics [10.420017109857765]
平滑粒子流体力学(Smoothed Particle hydrodynamics、SPH)は、現代の工学と科学の分野において一様である。
シミュレーションの粒子的な性質のため、グラフニューラルネットワーク(GNN)は魅力的なサロゲートとして登場し、成功した。
本研究では, 引張不安定性に起因する粒子群集を主要な落とし穴の1つとして同定する。
論文 参考訳(メタデータ) (2024-02-09T09:40:12Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
等変性を維持しながら, 2階連続性をGNNに組み込む方法を示す。
また、SEGNOに関する理論的知見も提供し、隣接する状態間の一意の軌跡を学習できることを強調している。
我々のモデルは最先端のベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-08-25T07:15:58Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Predicting fluid-structure interaction with graph neural networks [13.567118450260178]
本稿では,流体-構造相互作用系の低次モデリングのための回転同変準モノリシックグラフニューラルネットワークフレームワークを提案する。
有限要素インスパイアされたハイパーグラフニューラルネットワークを用いて、システム全体の状態に基づいて流体状態の進化を予測する。
提案するフレームワークは,インターフェース記述をトラッキングし,少なくとも2000時間のロールアウト時に,安定かつ正確なシステム状態予測を提供する。
論文 参考訳(メタデータ) (2022-10-09T07:42:23Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Neural Ordinary Differential Equations for Data-Driven Reduced Order
Modeling of Environmental Hydrodynamics [4.547988283172179]
流体シミュレーションにおける神経常微分方程式の利用について検討する。
テスト問題としては,シリンダー周辺の非圧縮性流れや河川・河口系における浅水流体力学の現実的応用などが挙げられる。
本研究では,ニューラル ODE が潜在空間力学の安定かつ正確な進化のためのエレガントな枠組みを提供することを示唆する。
論文 参考訳(メタデータ) (2021-04-22T19:20:47Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。