論文の概要: Neural Ordinary Differential Equations for Data-Driven Reduced Order
Modeling of Environmental Hydrodynamics
- arxiv url: http://arxiv.org/abs/2104.13962v1
- Date: Thu, 22 Apr 2021 19:20:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-04 04:55:23.291511
- Title: Neural Ordinary Differential Equations for Data-Driven Reduced Order
Modeling of Environmental Hydrodynamics
- Title(参考訳): データ駆動型還元次数モデリングのためのニューラル常微分方程式
- Authors: Sourav Dutta, Peter Rivera-Casillas, Matthew W. Farthing
- Abstract要約: 流体シミュレーションにおける神経常微分方程式の利用について検討する。
テスト問題としては,シリンダー周辺の非圧縮性流れや河川・河口系における浅水流体力学の現実的応用などが挙げられる。
本研究では,ニューラル ODE が潜在空間力学の安定かつ正確な進化のためのエレガントな枠組みを提供することを示唆する。
- 参考スコア(独自算出の注目度): 4.547988283172179
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model reduction for fluid flow simulation continues to be of great interest
across a number of scientific and engineering fields. Here, we explore the use
of Neural Ordinary Differential Equations, a recently introduced family of
continuous-depth, differentiable networks (Chen et al 2018), as a way to
propagate latent-space dynamics in reduced order models. We compare their
behavior with two classical non-intrusive methods based on proper orthogonal
decomposition and radial basis function interpolation as well as dynamic mode
decomposition. The test problems we consider include incompressible flow around
a cylinder as well as real-world applications of shallow water hydrodynamics in
riverine and estuarine systems. Our findings indicate that Neural ODEs provide
an elegant framework for stable and accurate evolution of latent-space dynamics
with a promising potential of extrapolatory predictions. However, in order to
facilitate their widespread adoption for large-scale systems, significant
effort needs to be directed at accelerating their training times. This will
enable a more comprehensive exploration of the hyperparameter space for
building generalizable Neural ODE approximations over a wide range of system
dynamics.
- Abstract(参考訳): 流体シミュレーションのモデル還元は、多くの科学および工学分野において大きな関心を寄せ続けている。
本稿では、最近導入された連続深度微分可能ネットワークのファミリーであるNeural Ordinary Differential Equations(Chen et al 2018)を用いて、遅延空間のダイナミクスを縮小順序モデルで伝播させる方法について検討する。
直交分解と放射基底関数補間および動的モード分解に基づく2つの古典的非侵入的手法との比較を行った。
実験課題は,シリンダーまわりの非圧縮性流れと,河川・河口系における浅層水力力学の実世界の応用である。
この結果から,ニューラルODEは潜在空間力学の安定かつ正確な進化のためのエレガントなフレームワークであり,外挿予測の可能性も期待できることがわかった。
しかしながら、大規模システムへの普及を促進するためには、トレーニング時間を短縮するための努力が必要である。
これにより、幅広いシステムダイナミクスに対して一般化可能なニューラルODE近似を構築するために、より包括的なハイパーパラメータ空間の探索が可能になる。
関連論文リスト
- PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
我々は物理符号化されたメッセージパッシンググラフネットワーク(PhyMPGN)という新しいグラフ学習手法を提案する。
我々は,GNNを数値積分器に組み込んで,与えられたPDEシステムに対する時間的時間的ダイナミクスの時間的行進を近似する。
PhyMPGNは、粗い非構造メッシュ上での様々なタイプの時間的ダイナミクスを正確に予測することができる。
論文 参考訳(メタデータ) (2024-10-02T08:54:18Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Learning to Accelerate Partial Differential Equations via Latent Global
Evolution [64.72624347511498]
The Latent Evolution of PDEs (LE-PDE) is a simple, fast and scalable method to accelerate the simulation and inverse optimization of PDEs。
我々は,このような潜在力学を効果的に学習し,長期的安定性を確保するために,新たな学習目標を導入する。
更新対象の寸法が最大128倍、速度が最大15倍向上し、競争精度が向上した。
論文 参考訳(メタデータ) (2022-06-15T17:31:24Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
本研究は、極限サイクルを持つ物理非線形力学系に対する普遍微分方程式(UDE)モデルの訓練に焦点をあてる。
数値シミュレーションによりトレーニングデータを生成する例を考察するとともに,提案するモデリング概念を物理実験に適用する。
ニューラルネットワークとガウス過程の両方を、力学モデルと共に普遍近似器として使用し、UDEモデリングアプローチの正確性と堅牢性を批判的に評価する。
論文 参考訳(メタデータ) (2021-10-22T15:43:03Z) - Data-driven reduced order modeling of environmental hydrodynamics using
deep autoencoders and neural ODEs [3.4527210650730393]
減弱基底表現の発見にディープオートエンコーダを用いた場合について検討する。
テスト問題としては,シリンダーまわりの非圧縮性流れや,河口系における浅水流体力学の現実的応用などが挙げられる。
論文 参考訳(メタデータ) (2021-07-06T17:45:37Z) - Accelerating Neural ODEs Using Model Order Reduction [0.0]
本稿では,ニューラルネットワークの圧縮と高速化に数学的モデルオーダー削減法が利用できることを示す。
我々は,ニューラルネットワークの層として必要な部分空間投影と操作を統合するニューラルODEを開発することで,新しい圧縮手法を実装した。
論文 参考訳(メタデータ) (2021-05-28T19:27:09Z) - A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media [1.5791732557395552]
多孔質媒体の多相流に関する物理に制約された勾配に基づくディープニューラルネットワーク(GDNN)について述べる。
GDNNが非線型応答の非線型パターンを効果的に予測できることを実証する。
論文 参考訳(メタデータ) (2021-04-30T02:14:00Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。