論文の概要: Random Matrix Theory-guided sparse PCA for single-cell RNA-seq data
- arxiv url: http://arxiv.org/abs/2509.15429v1
- Date: Thu, 18 Sep 2025 21:08:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-22 18:18:10.900588
- Title: Random Matrix Theory-guided sparse PCA for single-cell RNA-seq data
- Title(参考訳): 単一セルRNA系列データのためのランダム行列理論誘導スパースPCA
- Authors: Victor Chardès,
- Abstract要約: 単細胞RNA-seqは個々の細胞の詳細な分子スナップショットを提供する。
ほとんどの研究は、次元減少のための主成分分析(PCA)に依存している。
スパースプリンシパルコンポーネントの推論を導くRMT(Random Matrix Theory)ベースのアプローチでPCAを改善する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Single-cell RNA-seq provides detailed molecular snapshots of individual cells but is notoriously noisy. Variability stems from biological differences, PCR amplification bias, limited sequencing depth, and low capture efficiency, making it challenging to adapt computational pipelines to heterogeneous datasets or evolving technologies. As a result, most studies still rely on principal component analysis (PCA) for dimensionality reduction, valued for its interpretability and robustness. Here, we improve upon PCA with a Random Matrix Theory (RMT)-based approach that guides the inference of sparse principal components using existing sparse PCA algorithms. We first introduce a novel biwhitening method, inspired by the Sinkhorn-Knopp algorithm, that simultaneously stabilizes variance across genes and cells. This enables the use of an RMT-based criterion to automatically select the sparsity level, rendering sparse PCA nearly parameter-free. Our mathematically grounded approach retains the interpretability of PCA while enabling robust, hands-off inference of sparse principal components. Across seven single-cell RNA-seq technologies and four sparse PCA algorithms, we show that this method systematically improves the reconstruction of the principal subspace and consistently outperforms PCA-, autoencoder-, and diffusion-based methods in cell-type classification tasks.
- Abstract(参考訳): 単細胞RNA-seqは個々の細胞の詳細な分子スナップショットを提供するが、非常にうるさい。
可変性は生物学的な差異、PCR増幅バイアス、シークエンシング深さの制限、捕捉効率の低さから来ており、計算パイプラインを異質なデータセットや進化する技術に適応させることが困難である。
結果として、ほとんどの研究は、その解釈可能性と堅牢性から評価される次元的還元の主成分分析(PCA)に依存している。
そこで我々は,既存のスパースPCAアルゴリズムを用いて,スパース主成分の推測を導くランダム行列理論(RMT)に基づく手法によりPCAを改善する。
まず,Sinkhorn-Knoppアルゴリズムにヒントを得て,遺伝子と細胞間の分散を同時に安定化するバイ白化法を提案する。
これにより、RTTベースの基準を使用して、スパースレベルを自動的に選択し、スパースPCAをほぼパラメータフリーにすることができる。
数学的には,PCAの解釈可能性を維持しつつ,スパース主成分の頑健かつ手動推論を可能にする。
7つのシングルセルRNA-seq技術と4つのスパースPCAアルゴリズムを用いて,本手法は主部分空間の再構築を体系的に改善し,セル型分類タスクにおけるPCA-,オートエンコーダ-,拡散に基づく手法より一貫して優れていることを示す。
関連論文リスト
- Solve sparse PCA problem by employing Hamiltonian system and leapfrog method [0.0]
そこで本研究では,スムーズなL1ペナルティを通したスパースPCAアルゴリズムを提案する。
k-アネレスト近傍とカーネルリッジ回帰の両方を用いた顔認識データセットの実験的評価-提案したスパースPCA法は従来のPCA法よりも高い分類精度を一貫して達成している。
論文 参考訳(メタデータ) (2025-03-30T06:39:11Z) - K-Nearest-Neighbors Induced Topological PCA for scRNA Sequence Data
Analysis [0.3683202928838613]
永続ラプラシアン(PL)法とL$_2,1$ノルム正規化を組み合わせたトポロジカルプライマリコンポーネント分析(tPCA)法を提案する。
さらに, k-Nearest-Neighbor (kNN) の永続ラプラス的手法を導入し, 永続ラプラス的手法の堅牢性を向上させる。
提案したtPCA法とkNN-tPCA法の有効性を,11種類のscRNA-seqデータセット上で検証した。
論文 参考訳(メタデータ) (2023-10-23T03:07:50Z) - Improved Privacy-Preserving PCA Using Optimized Homomorphic Matrix
Multiplication [0.0]
主成分分析(英: principal Component Analysis、PCA)は、機械学習とデータ分析の領域で広く利用されている重要な技術である。
近年,セキュアなクラウドコンピューティングシナリオにおいて,プライバシ保護型PCAアルゴリズムの同型暗号化を活用する取り組みが進められている。
本稿では,これらの制約に対処するプライバシー保護PCAに対して,従来の手法に比べて効率,精度,拡張性に優れる新たなアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-27T02:51:20Z) - Local manifold learning and its link to domain-based physics knowledge [53.15471241298841]
多くの反応系では、熱化学状態空間は低次元多様体(LDM)に近く進化すると仮定される。
局所的データクラスタ(ローカルPCA)に適用されたPCAは,熱化学状態空間の固有パラメータ化を検出することができることを示す。
論文 参考訳(メタデータ) (2022-07-01T09:06:25Z) - Capturing the Denoising Effect of PCA via Compression Ratio [3.967854215226183]
主成分分析(PCA)は機械学習における最も基本的なツールの1つである。
本稿では,PCAが高次元雑音データに与える影響を捉えるために,Emphcompression ratioと呼ばれる新しい指標を提案する。
この新しい指標に基づいて、我々は、外れ値を検出するのに使える簡単なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-04-22T18:43:47Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - AgFlow: Fast Model Selection of Penalized PCA via Implicit
Regularization Effects of Gradient Flow [64.81110234990888]
主成分分析(PCA)は特徴抽出と次元減少の有効な手法として広く用いられている。
High Dimension Low Sample Size (HDLSS) 設定では、ペナル化ロードを備えた修正主成分が好まれる。
ペナル化PCAの高速モデル選択法として近似勾配流(AgFlow)を提案する。
論文 参考訳(メタデータ) (2021-10-07T08:57:46Z) - Turning Channel Noise into an Accelerator for Over-the-Air Principal
Component Analysis [65.31074639627226]
主成分分析(PCA)は、データセットの線形構造を抽出するための技術です。
勾配降下アルゴリズムに基づくマルチアクセスチャネル上にPCAを配置する手法を提案する。
オーバー・ザ・エア・アグリゲーションはマルチ・アクセスの遅延を減らすために採用され、オーバー・ザ・エア・PCAという名称を与える。
論文 参考訳(メタデータ) (2021-04-20T16:28:33Z) - Investigating the Scalability and Biological Plausibility of the
Activation Relaxation Algorithm [62.997667081978825]
アクティベーション・リラクシエーション(AR)アルゴリズムは、誤りアルゴリズムのバックプロパゲーションを近似するためのシンプルでロバストなアプローチを提供する。
このアルゴリズムは、学習可能な後方重みセットを導入することにより、さらに単純化され、生物学的に検証可能であることを示す。
また、元のARアルゴリズム(凍結フィードフォワードパス)の別の生物学的に信じられない仮定が、パフォーマンスを損なうことなく緩和できるかどうかについても検討する。
論文 参考訳(メタデータ) (2020-10-13T08:02:38Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
主成分分析(PCA)は、機械学習と統計学において広く使われている次元削減手法である。
スパース主成分分析(Sparse principal Component Analysis)と呼ばれる,スパース主成分負荷を求める様々な手法が提案されている。
本研究では,SPCA問題に対するしきい値の精度,時間,近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-23T04:25:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。