論文の概要: K-Nearest-Neighbors Induced Topological PCA for scRNA Sequence Data
Analysis
- arxiv url: http://arxiv.org/abs/2310.14521v1
- Date: Mon, 23 Oct 2023 03:07:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 23:01:16.588901
- Title: K-Nearest-Neighbors Induced Topological PCA for scRNA Sequence Data
Analysis
- Title(参考訳): K-Nearest-NeighborsによるcRNA配列解析のためのトポロジカルPCA
- Authors: Sean Cottrell, Yuta Hozumi, Guo-Wei Wei
- Abstract要約: 永続ラプラシアン(PL)法とL$_2,1$ノルム正規化を組み合わせたトポロジカルプライマリコンポーネント分析(tPCA)法を提案する。
さらに, k-Nearest-Neighbor (kNN) の永続ラプラス的手法を導入し, 永続ラプラス的手法の堅牢性を向上させる。
提案したtPCA法とkNN-tPCA法の有効性を,11種類のscRNA-seqデータセット上で検証した。
- 参考スコア(独自算出の注目度): 0.3683202928838613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single-cell RNA sequencing (scRNA-seq) is widely used to reveal heterogeneity
in cells, which has given us insights into cell-cell communication, cell
differentiation, and differential gene expression. However, analyzing scRNA-seq
data is a challenge due to sparsity and the large number of genes involved.
Therefore, dimensionality reduction and feature selection are important for
removing spurious signals and enhancing downstream analysis. Traditional PCA, a
main workhorse in dimensionality reduction, lacks the ability to capture
geometrical structure information embedded in the data, and previous graph
Laplacian regularizations are limited by the analysis of only a single scale.
We propose a topological Principal Components Analysis (tPCA) method by the
combination of persistent Laplacian (PL) technique and L$_{2,1}$ norm
regularization to address multiscale and multiclass heterogeneity issues in
data. We further introduce a k-Nearest-Neighbor (kNN) persistent Laplacian
technique to improve the robustness of our persistent Laplacian method. The
proposed kNN-PL is a new algebraic topology technique which addresses the many
limitations of the traditional persistent homology. Rather than inducing
filtration via the varying of a distance threshold, we introduced kNN-tPCA,
where filtrations are achieved by varying the number of neighbors in a kNN
network at each step, and find that this framework has significant implications
for hyper-parameter tuning. We validate the efficacy of our proposed tPCA and
kNN-tPCA methods on 11 diverse benchmark scRNA-seq datasets, and showcase that
our methods outperform other unsupervised PCA enhancements from the literature,
as well as popular Uniform Manifold Approximation (UMAP), t-Distributed
Stochastic Neighbor Embedding (tSNE), and Projection Non-Negative Matrix
Factorization (NMF) by significant margins.
- Abstract(参考訳): 単細胞RNAシークエンシング(scRNA-seq)は、細胞内の不均一性を明らかにするために広く用いられ、細胞間通信、細胞分化、および分化遺伝子発現に関する洞察を与えてくれた。
しかし、scRNA-seqデータの解析は、スパーシリティと関連する多数の遺伝子によって困難である。
したがって,スプリアス信号の除去と下流解析の促進には,次元化と特徴選択が重要である。
従来のPCAは次元減少の主要な作業場であり、データに埋め込まれた幾何学的構造情報をキャプチャする能力に欠けており、以前のグラフラプラシア正規化は単一のスケールの分析によって制限されている。
永続ラプラシアン(PL)手法とL$_{2,1}$ノルム正規化を組み合わせたトポロジカル・プライマリ・コンポーネント分析(tPCA)法を提案し,データ中のマルチスケールおよびマルチクラスの不均一性問題に対処する。
さらに, k-Nearest-Neighbor (kNN) の永続ラプラス的手法を導入し, 永続ラプラス的手法の堅牢性を向上させる。
提案する knn-pl は従来の永続ホモロジーの多くの制限に対処する新しい代数的位相技法である。
距離しきい値の変化によってフィルタを誘導する代わりに、各ステップでkNNネットワーク内の隣人数を変動させることでフィルタを実現するkNN-tPCAを導入し、このフレームワークがハイパーパラメータチューニングに重大な影響を与えることを発見した。
提案したtPCA法とkNN-tPCA法が,11種類のベンチマークscRNA-seqデータセットに対して有効であることを示すとともに,本手法が文献の他の教師なしPCA拡張よりも優れていることを示すとともに,Uniform Manifold Approximation (UMAP), t-Distributed Stochastic Neighbor Embedding (tSNE), およびProjection Non-Negative Matrix Factorization (NMF) を有意差で評価した。
関連論文リスト
- Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-19T13:33:38Z) - Injecting Hierarchical Biological Priors into Graph Neural Networks for Flow Cytometry Prediction [1.7709249262395883]
本研究では、単一セルのマルチクラス分類のためのグラフニューラルネットワーク(GNN)に階層的な事前知識を注入することを検討する。
本稿では,複数のGNNモデル,すなわちFCHC-GNNに適用可能な階層的なプラグイン手法を提案する。
論文 参考訳(メタデータ) (2024-05-28T18:24:16Z) - Domain Adaptive and Fine-grained Anomaly Detection for Single-cell Sequencing Data and Beyond [4.4136780724044735]
ACSleuthは, 異常細胞の検出, ドメイン適応, 微粒化アノテートを方法論的に結合したワークフローに統合した, 新規な再構成逸脱誘導型生成フレームワークである。
この分析により, ACSleuth における新規かつ優れた平均誤差に基づく異常スコアリングの開発が可能となった。
論文 参考訳(メタデータ) (2024-04-26T14:48:24Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
本稿では,Mixing Model Stiefel Adaptation (MSA)と呼ばれる時系列データに対する新しいドメイン適応手法を提案する。
我々は、ドメイン間の等価な信号分散とペアの対応を確立することにより、ターゲット領域における豊富なラベルのないデータを利用して効果的な予測を行う。
MSAは、Cam-CANデータセットのMEG信号を用いて、タスクの変動を伴う脳年齢回帰の最近の手法より優れている。
論文 参考訳(メタデータ) (2024-01-24T19:04:49Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - Analyzing scRNA-seq data by CCP-assisted UMAP and t-SNE [0.0]
相関クラスタリングとプロジェクション(CCP)は、cRNA-seqデータを前処理する有効な方法として導入された。
CCPは、行列対角化を必要としないデータドメインアプローチである。
8つの公開データセットを使用することで、CCPは UMAP と t-SNE の可視化を大幅に改善することがわかった。
論文 参考訳(メタデータ) (2023-06-23T19:15:43Z) - PLPCA: Persistent Laplacian Enhanced-PCA for Microarray Data Analysis [5.992724190105578]
永続ラプラシアン強化主成分分析(PLPCA)を提案する。
PLPCAは、パーシステンシャルスペクトルグラフ理論を用いた初期の正規化PCA法の利点を生かしている。
グラフラプラシアンとは対照的に、永続ラプラシアンは濾過によるマルチスケール解析を可能にし、高次単純錯体を包含する。
論文 参考訳(メタデータ) (2023-06-09T22:48:14Z) - coVariance Neural Networks [119.45320143101381]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ内の相互関係を利用して学習する効果的なフレームワークである。
我々は、サンプル共分散行列をグラフとして扱う、共分散ニューラルネットワーク(VNN)と呼ばれるGNNアーキテクチャを提案する。
VNN の性能は PCA ベースの統計手法よりも安定していることを示す。
論文 参考訳(メタデータ) (2022-05-31T15:04:43Z) - Approximate kNN Classification for Biomedical Data [1.1852406625172218]
Single-cell RNA-seq (scRNA-seq) は、将来性はあるが重要な計算課題を持つDNAシークエンシング技術である。
scRNA-seqデータにおけるkNN分類のタスクに近似した近接探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-03T18:30:43Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z) - Improved guarantees and a multiple-descent curve for Column Subset
Selection and the Nystr\"om method [76.73096213472897]
我々は,データ行列のスペクトル特性を利用して近似保証を改良する手法を開発した。
我々のアプローチは、特異値減衰の既知の速度を持つデータセットのバウンダリが大幅に向上する。
RBFパラメータを変更すれば,改良された境界線と多重発振曲線の両方を実データセット上で観測できることが示される。
論文 参考訳(メタデータ) (2020-02-21T00:43:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。