論文の概要: Computing Linear Regions in Neural Networks with Skip Connections
- arxiv url: http://arxiv.org/abs/2509.15441v1
- Date: Thu, 18 Sep 2025 21:27:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-22 18:18:10.911619
- Title: Computing Linear Regions in Neural Networks with Skip Connections
- Title(参考訳): スキップ接続を持つニューラルネットワークにおける線形領域の計算
- Authors: Johnny Joyce, Jan Verschelde,
- Abstract要約: ニューラルネットワークが線形写像である領域を計算するアルゴリズムを提案する。
ニューラルネットワークのトレーニングの難しさ、特にオーバーフィットの問題やスキップ接続の利点に関する洞察を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks are important tools in machine learning. Representing piecewise linear activation functions with tropical arithmetic enables the application of tropical geometry. Algorithms are presented to compute regions where the neural networks are linear maps. Through computational experiments, we provide insights on the difficulty to train neural networks, in particular on the problems of overfitting and on the benefits of skip connections.
- Abstract(参考訳): ニューラルネットワークは機械学習において重要なツールである。
トロピカル算術による片方向線形活性化関数の表現は、トロピカル幾何の応用を可能にする。
アルゴリズムはニューラルネットワークが線形写像である計算領域に提示される。
計算実験を通じて、ニューラルネットワークのトレーニングの難しさ、特に過度に適合する問題やスキップ接続の利点についての洞察を提供する。
関連論文リスト
- Regional, Lattice and Logical Representations of Neural Networks [0.5279873919047532]
本稿では、隠れ層におけるReLUアクティベーション関数と、出力層におけるTruncated IDアクティベーション関数とのフィードフォワードニューラルネットワークの変換アルゴリズムを提案する。
また,異なる大きさのニューラルネットワークに対して,提案手法によって出力される局所表現の複雑さを実験的に検討した。
論文 参考訳(メタデータ) (2025-06-06T07:58:09Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Tropical Expressivity of Neural Networks [0.0]
熱帯の幾何学を用いて、ニューラルネットワークの様々なアーキテクチャ的側面を特徴づけ、研究する。
線形領域の正確な数を計算するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-30T15:45:03Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Riemannian Residual Neural Networks [58.925132597945634]
残余ニューラルネットワーク(ResNet)の拡張方法を示す。
ResNetは、機械学習において、有益な学習特性、優れた経験的結果、そして様々なニューラルネットワークを構築する際に容易に組み込める性質のために、ユビキタスになった。
論文 参考訳(メタデータ) (2023-10-16T02:12:32Z) - When Deep Learning Meets Polyhedral Theory: A Survey [5.59187625600025]
過去10年間で、ディープ・ニューラル・ラーニングの顕著な精度のおかげで、ディープは予測モデリングの一般的な方法論となった。
一方、ニューラルネットワークの構造はより単純で線形な関数に収束した。
論文 参考訳(メタデータ) (2023-04-29T11:46:53Z) - A Derivation of Feedforward Neural Network Gradients Using Fr\'echet
Calculus [0.0]
Fr'teche calculus を用いたフィードフォワードニューラルネットワークの勾配の導出を示す。
我々の分析が、畳み込みネットワークを含むより一般的なニューラルネットワークアーキテクチャにどのように一般化するかを示す。
論文 参考訳(メタデータ) (2022-09-27T08:14:00Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。