論文の概要: Towards Seeing Bones at Radio Frequency
- arxiv url: http://arxiv.org/abs/2509.17979v1
- Date: Mon, 22 Sep 2025 16:24:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 18:58:16.49941
- Title: Towards Seeing Bones at Radio Frequency
- Title(参考訳): 放射線周波数で骨を見るために
- Authors: Yiwen Song, Hongyang Li, Kuang Yuan, Ran Bi, Swarun Kumar,
- Abstract要約: 無線センシングの文献は、長い間、無線周波数でX線のようなビジョンを実現しようとしてきた。
しかし、現在最先端のワイヤレスセンシングの文献では、肉の下の骨の1つである前頭骨のX線像をまだ生成していない。
骨をmm分解能で撮像するための透過型RFイメージングシステム MCT について検討する。
- 参考スコア(独自算出の注目度): 14.086929312160402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wireless sensing literature has long aspired to achieve X-ray-like vision at radio frequencies. Yet, state-of-the-art wireless sensing literature has yet to generate the archetypal X-ray image: one of the bones beneath flesh. In this paper, we explore MCT, a penetration-based RF-imaging system for imaging bones at mm-resolution, one that significantly exceeds prior penetration-based RF imaging literature. Indeed the long wavelength, significant attenuation and complex diffraction that occur as RF propagates through flesh, have long limited imaging resolution (to several centimeters at best). We address these concerns through a novel penetration-based synthetic aperture algorithm, coupled with a learning-based pipeline to correct for diffraction-induced artifacts. A detailed evaluation of meat models demonstrates a resolution improvement from sub-decimeter to sub-centimeter over prior art in RF penetrative imaging.
- Abstract(参考訳): 無線センシングの文献は、長い間、無線周波数でX線のようなビジョンを実現しようとしてきた。
しかし、現在最先端のワイヤレスセンシングの文献では、肉の下の骨の1つである前頭骨のX線像をまだ生成していない。
本稿では, 骨をmm分解能で撮像する透過型RFイメージングシステム MCT について検討する。
実際、RFが肉を通して伝播するときに起こる長い波長、顕著な減衰、複雑な回折は、画像の解像度が長い(せいぜい数センチメートル)。
これらの懸念に対処するために、新しい浸透型合成開口アルゴリズムと学習型パイプラインを組み合わせることで、回折によるアーティファクトの修正を行う。
肉モデルの詳細な評価は、RF透過画像における先行技術よりも、サブディシメータからサブセンシティメータへの分解能の向上を示す。
関連論文リスト
- Ultrasound Lung Aeration Map via Physics-Aware Neural Operators [78.6077820217471]
肺超音波は、急性肺疾患や慢性肺疾患を診断するクリニックにおいて増加するモダリティである。
超音波による空気透過性の低下に起因する胸膜界面からの複雑な逆流によって複雑になる。
RFデータから肺エアレーションマップを直接再構成するAIモデルLUNAを提案する。
論文 参考訳(メタデータ) (2025-01-02T09:24:34Z) - PHOCUS: Physics-Based Deconvolution for Ultrasound Resolution Enhancement [36.20701982473809]
超音波イメージングシステムのインパルス機能はポイントスプレッド機能(PSF)と呼ばれ、画像形成過程における反射体の空間分布と結びついている。
我々は、より一般的なBモード画像を直接扱う、モデル付きPSFを用いた物理ベースのデコンボリューションプロセスを導入する。
Inlicit Neural Representations (INR) を利用することで、空間位置からそれぞれのエコー原性値への連続的なマッピングを学習し、離散化された画像空間を効果的に補償する。
論文 参考訳(メタデータ) (2024-08-07T09:52:30Z) - Capability enhancement of the X-ray micro-tomography system via
ML-assisted approaches [0.8999666725996978]
X線マイクロCT画像におけるリングアーティファクトは、その正確な視覚的解釈と定量的解析における主要な原因の1つである。
本稿では、UNetにインスパイアされた畳み込みニューラルネットワーク(CNN)ベースのディープラーニング(DL)モデルと、リングアーティファクトを除去するためのスキップ接続を備えた一連のエンコーダとデコーダユニットを提案する。
論文 参考訳(メタデータ) (2024-02-08T14:23:24Z) - BS-Diff: Effective Bone Suppression Using Conditional Diffusion Models
from Chest X-Ray Images [21.19843479423806]
胸部X線(CXR)は肺検診の低用量モダリティとして一般的に用いられる。
肺領域の約75%は骨と重なり、疾患の検出と診断を妨げている。
骨抑制技術が導入されたが、現在の病院の二重エネルギーサブトラクションイメージング技術は、高価な機器と高放射線にさらされる被検体を必要としている。
本稿では,U-Netアーキテクチャを備えた条件拡散モデルと,オートエンコーダを組み込むシンプルな拡張モジュールを備える骨抑制フレームワークBS-Diffを提案する。
論文 参考訳(メタデータ) (2023-11-26T15:13:13Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - X-Ray2EM: Uncertainty-Aware Cross-Modality Image Reconstruction from
X-Ray to Electron Microscopy in Connectomics [55.6985304397137]
膜セグメンテーション品質を向上したEMライクな画像にX線画像を変換する不確実性を考慮した3D再構成モデルを提案する。
これは、よりシンプルで、より高速で、より正確なX線ベースのコネクトロミクスパイプラインを開発する可能性を示している。
論文 参考訳(メタデータ) (2023-03-02T00:52:41Z) - X-ray Dissectography Enables Stereotography to Improve Diagnostic
Performance [5.357314252311141]
少ない放射線投影から対象臓器・組織をデジタル的に抽出する「X線ディストモグラフィー」を提案する。
実験により、X線ステレオグラフィーは肺のような孤立した臓器で達成できることが示された。
X線ディストモグラフィーは、放射線線量とシステムコストにおけるCTグレード診断のための新しいX線画像モダリティを、放射線画像やトモシンセティックイメージングに匹敵する、と約束している。
論文 参考訳(メタデータ) (2021-11-30T00:31:59Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
受信した超音波エコーを空間画像領域にマッピングするビームフォーミングは、超音波画像形成チェーンの心臓に位置する。
現代の超音波イメージングは、強力なデジタル受信チャネル処理の革新に大きく依存している。
ディープラーニング手法は、デジタルビームフォーミングパイプラインにおいて魅力的な役割を果たす。
論文 参考訳(メタデータ) (2021-09-23T15:15:21Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。