論文の概要: Control Disturbance Rejection in Neural ODEs
- arxiv url: http://arxiv.org/abs/2509.18034v1
- Date: Mon, 22 Sep 2025 17:09:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 18:58:16.52748
- Title: Control Disturbance Rejection in Neural ODEs
- Title(参考訳): ニューラルオーダにおける制御外乱の排除
- Authors: Erkan Bayram, Mohamed-Ali Belabbas, Tamer Başar,
- Abstract要約: 本稿では,障害の制御に耐性のあるモデルを提供するニューラルODEの反復学習アルゴリズムを提案する。
この定式化により,モデルが新たなデータポイントを効果的に学習し,制御障害に対して得られることを示す。
- 参考スコア(独自算出の注目度): 0.34410212782758043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an iterative training algorithm for Neural ODEs that provides models resilient to control (parameter) disturbances. The method builds on our earlier work Tuning without Forgetting-and similarly introduces training points sequentially, and updates the parameters on new data within the space of parameters that do not decrease performance on the previously learned training points-with the key difference that, inspired by the concept of flat minima, we solve a minimax problem for a non-convex non-concave functional over an infinite-dimensional control space. We develop a projected gradient descent algorithm on the space of parameters that admits the structure of an infinite-dimensional Banach subspace. We show through simulations that this formulation enables the model to effectively learn new data points and gain robustness against control disturbance.
- Abstract(参考訳): 本稿では,ニューラル・オーダに対する反復的学習アルゴリズムを提案し,制御(パラメータ)障害に対して回復力のあるモデルを提供する。
提案手法は,事前学習したトレーニングポイントの性能を低下させることのないパラメータの空間内の新しいデータに対するパラメータを更新し,フラットミニマの概念に着想を得て,無限次元の制御空間上での非凸関数のミニマックス問題を解く。
無限次元バナッハ部分空間の構造を許容するパラメータ空間上の射影勾配降下アルゴリズムを開発する。
この定式化により,モデルが新たなデータポイントを効果的に学習し,制御障害に対して堅牢性を得ることができることを示す。
関連論文リスト
- Principal Component Flow Map Learning of PDEs from Incomplete, Limited, and Noisy Data [0.0]
本稿では,力学系の進化をモデル化する計算手法を提案する。
本研究では,高次元非一様格子上の部分観測偏微分方程式(PDE)をモデル化する上での課題に着目する。
本稿では、状態変数や計算領域のサブセットでのみ利用可能なノイズと制限付きデータを用いたPDEモデリングに適したニューラルネットワーク構造を提案する。
論文 参考訳(メタデータ) (2024-07-15T16:06:20Z) - Nonparametric Control Koopman Operators [5.041003515004196]
本稿では,制御システムのための新しいクープマン合成演算子表現フレームワークを提案する。
異なるモデル表現の基本的な等価性を確立することにより、制御系演算子学習と無限次元回帰のギャップを埋めることができる。
論文 参考訳(メタデータ) (2024-05-12T15:46:52Z) - On the Emergence of Cross-Task Linearity in the Pretraining-Finetuning Paradigm [47.55215041326702]
我々は、共通の事前訓練されたチェックポイントから、クロスタスク線形性(CTL)と呼ばれる異なるタスクに微調整されたモデルにおいて、興味深い線形現象を発見する。
2つの微調整モデルの重みを線形に補間すると、重み補間モデルの特徴は各層における2つの微調整モデルの特徴の線形性にほぼ等しいことが示される。
プレトレーニング-ファインタニングのパラダイムでは、ニューラルネットワークは、パラメータ空間から特徴空間への写像である線形写像として概ね機能する。
論文 参考訳(メタデータ) (2024-02-06T03:28:36Z) - A Metaheuristic for Amortized Search in High-Dimensional Parameter
Spaces [0.0]
本稿では,特徴インフォームド変換から次元還元を実現するメタヒューリスティックを提案する。
DR-FFITは、高次元空間における勾配自由パラメータ探索を容易にする効率的なサンプリング戦略を実装している。
実験データから,DR-FFITは,確立したメタヒューリスティックスに対するランダム検索とシミュレート・アニーリングの性能を向上させることが示された。
論文 参考訳(メタデータ) (2023-09-28T14:25:14Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
この研究は、関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)と呼ばれる数学的に厳密なフレームワークを導入する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - On the Forward Invariance of Neural ODEs [92.07281135902922]
本稿では,ニューラル常微分方程式(ODE)が出力仕様を満たすことを保証するための新しい手法を提案する。
提案手法では,出力仕様を学習システムのパラメータや入力の制約に変換するために,制御障壁関数のクラスを用いる。
論文 参考訳(メタデータ) (2022-10-10T15:18:28Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
我々は、制御に線形に依存する$dot x = sum_i=1lF_i(x)u_i$という形の制御系を考える。
対応するフローを用いて、コンパクトな点のアンサンブル上の微分同相写像の作用を近似する。
論文 参考訳(メタデータ) (2021-10-24T08:57:46Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。