論文の概要: Measurement Score-Based MRI Reconstruction with Automatic Coil Sensitivity Estimation
- arxiv url: http://arxiv.org/abs/2509.18402v1
- Date: Mon, 22 Sep 2025 20:33:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-24 20:41:27.575831
- Title: Measurement Score-Based MRI Reconstruction with Automatic Coil Sensitivity Estimation
- Title(参考訳): 自動コイル感度推定によるスコアベースMRI再構成
- Authors: Tingjun Liu, Chicago Y. Park, Yuyang Hu, Hongyu An, Ulugbek S. Kamilov,
- Abstract要約: 拡散型逆問題解法 (DIS) は近年, 圧縮センシング並列MRI再構成において優れた性能を示した。
それらは通常、事前に校正されたコイル感度マップ(CSM)と地上の真理画像に依存しており、しばしば実用的ではない。
本稿では,測定スコアの自動推定と自己教師付き学習を共同で行うことにより,これらの依存関係を解消する手法を提案する。
- 参考スコア(独自算出の注目度): 10.013774165445385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion-based inverse problem solvers (DIS) have recently shown outstanding performance in compressed-sensing parallel MRI reconstruction by combining diffusion priors with physical measurement models. However, they typically rely on pre-calibrated coil sensitivity maps (CSMs) and ground truth images, making them often impractical: CSMs are difficult to estimate accurately under heavy undersampling and ground-truth images are often unavailable. We propose Calibration-free Measurement Score-based diffusion Model (C-MSM), a new method that eliminates these dependencies by jointly performing automatic CSM estimation and self-supervised learning of measurement scores directly from k-space data. C-MSM reconstructs images by approximating the full posterior distribution through stochastic sampling over partial measurement posterior scores, while simultaneously estimating CSMs. Experiments on the multi-coil brain fastMRI dataset show that C-MSM achieves reconstruction performance close to DIS with clean diffusion priors -- even without access to clean training data and pre-calibrated CSMs.
- Abstract(参考訳): 拡散型逆問題解法 (DIS) は近年, 拡散先行法と物理測定モデルを組み合わせることで, 圧縮センシング並列MRI再構成において優れた性能を示した。
しかし、それらは通常、事前に校正されたコイル感度マップ(CSM)と地上の真理画像に依存しており、しばしば非現実的である: CSMは重いアンダーサンプリングの下で正確に推定することは困難であり、地上の真実画像は利用できないことが多い。
自動CSM推定とk空間データから直接測定スコアの自己教師付き学習を行うことにより,これらの依存を解消するキャリブレーションフリー計測スコアベース拡散モデル(C-MSM)を提案する。
C-MSMは、部分的測定後スコア上での確率的サンプリングにより、全後分布を近似し、同時にCSMを推定することにより、画像の再構成を行う。
マルチコイル脳高速MRIデータセットの実験によると、C-MSMは、クリーンなトレーニングデータや校正済みのCSMにアクセスしなくても、クリーンな拡散前のdisに近い再構築パフォーマンスを達成する。
関連論文リスト
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
本稿では, 微細なメタデータを再構成プロセスに統合したMRI用テキスト条件拡散モデルであるContextMRIを提案する。
メタデータの忠実度はスライス位置やコントラストから患者年齢、性別、病理まで増加し、体系的に再構築性能が向上することを示す。
論文 参考訳(メタデータ) (2025-01-08T05:15:43Z) - Fast Controllable Diffusion Models for Undersampled MRI Reconstruction [9.257507373275288]
本研究は,MRIのアンダーサンプル再構成のための拡散モデルの制御可能な生成を促進させる,Predictor-Projector-Noisor (PPN) と呼ばれる新しいアルゴリズムを提案する。
以上の結果から, PPNは, 他の制御可能なサンプリング法に比べて, 再構成時間を大幅に短縮した, アンサンプ付きk空間計測に適合した高忠実MR画像を生成することがわかった。
論文 参考訳(メタデータ) (2023-11-20T05:58:05Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
拡散モデルは、高い試料品質のため、MRIの再生を加速するために人気を博している。
推論時に柔軟にフォワードモデルを組み込んだまま、効果的にリッチなデータプリエントとして機能することができる。
拡散モデル(SMRD)を用いたSUREに基づくMRI再構成を導入し,テスト時の堅牢性を向上する。
論文 参考訳(メタデータ) (2023-10-03T05:05:35Z) - DDMM-Synth: A Denoising Diffusion Model for Cross-modal Medical Image
Synthesis with Sparse-view Measurement Embedding [7.6849475214826315]
本稿では,医療画像合成のためのDDMM-Synthという新しいフレームワークを提案する。
これはMRI誘導拡散モデルと新しいCT計測埋め込み逆サンプリングスキームを組み合わせたものである。
特定の臨床応用のための後方CTの投射数を調整することができ、その修正版はノイズのある症例に対して結果を著しく改善することができる。
論文 参考訳(メタデータ) (2023-03-28T07:13:11Z) - Dual-Domain Self-Supervised Learning for Accelerated Non-Cartesian MRI
Reconstruction [14.754843942604472]
非カルテシアンMRIの再生を高速化するための完全自己教師型アプローチを提案する。
トレーニングでは、アンダーサンプリングされたデータは、非結合のk空間ドメイン分割に分割される。
画像レベルの自己スーパービジョンでは、元のアンサンプデータから得られる外観整合性を強制する。
論文 参考訳(メタデータ) (2023-02-18T06:11:49Z) - Self-Score: Self-Supervised Learning on Score-Based Models for MRI
Reconstruction [18.264778497591603]
本稿では,MRI再構成のための完全サンプルデータフリースコアベース拡散モデルを提案する。
アンダーサンプリングされたデータに基づいて、自己監督的な方法で、完全にサンプリングされたMR画像を学ぶ。
公開データセットにおける実験により,提案手法は既存の自己教師型MRI再構成法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-09-02T06:21:42Z) - MRI Reconstruction via Data Driven Markov Chain with Joint Uncertainty
Estimation [3.5751623095926806]
本稿では,MRI再構成のための学習確率分布からの効率的なサンプリングを可能にするフレームワークを提案する。
データ駆動型マルコフ連鎖は、所定の画像データベースから学習した生成モデルから構築される。
提案手法の性能は, 10倍の高速化獲得を用いて, オープンデータセット上で評価する。
論文 参考訳(メタデータ) (2022-02-03T09:13:49Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。