論文の概要: Deterministic Discrete Denoising
- arxiv url: http://arxiv.org/abs/2509.20896v1
- Date: Thu, 25 Sep 2025 08:30:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-26 20:58:12.792131
- Title: Deterministic Discrete Denoising
- Title(参考訳): 決定論的離散化(Deterministic Discrete Denoising)
- Authors: Hideyuki Suzuki, Hiroshi Yamashita,
- Abstract要約: マルコフ連鎖に基づく離散状態拡散モデルに対する決定論的分解アルゴリズムを提案する。
生成逆過程は、弱いカオス的ダイナミクスを持つハーディングアルゴリズムの変種を導入することによりデランドマイズされる。
連続拡散において確立された決定論的逆過程は離散状態空間においても有効であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a deterministic denoising algorithm for discrete-state diffusion models based on Markov chains. The generative reverse process is derandomized by introducing a variant of the herding algorithm with weakly chaotic dynamics, which induces deterministic discrete state transitions. Our approach is a direct replacement for the stochastic denoising process, requiring neither retraining nor continuous state embeddings. We demonstrate consistent improvements in both efficiency and sample quality on text and image generation tasks. Thus, this simple derandomization approach is expected to enhance the significance of discrete diffusion in generative modeling. Furthermore, our results reveal that deterministic reverse processes, well established in continuous diffusion, can also be effective in discrete state spaces.
- Abstract(参考訳): マルコフ連鎖に基づく離散状態拡散モデルに対する決定論的分解アルゴリズムを提案する。
生成的逆過程は、決定論的離散状態遷移を誘導する弱カオス力学を持つシェディングアルゴリズムの変種を導入することでデランドマイズされる。
我々のアプローチは確率的復調プロセスの直接的な置き換えであり、再訓練も連続的な状態埋め込みも必要としない。
テキストおよび画像生成タスクにおける効率とサンプル品質の両面での一貫した改善を示す。
したがって、この単純なデランドマイズ手法は、生成的モデリングにおける離散拡散の重要性を高めることが期待されている。
さらに, 連続拡散において確立された決定論的逆過程は, 離散状態空間においても有効であることを示した。
関連論文リスト
- Simple and Critical Iterative Denoising: A Recasting of Discrete Diffusion in Graph Generation [0.0]
中間ノイズ状態間の依存関係は、逆ノイズ化プロセス中にエラーの蓄積と伝播を引き起こす。
本稿では, 離散拡散を単純化し, 問題を回避し, 簡易反復分解という新しい枠組みを提案する。
実験により,提案手法はグラフ生成タスクにおいて既存の離散拡散ベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2025-03-27T15:08:58Z) - Discrete Markov Probabilistic Models [8.206838934494513]
離散マルコフ確率モデル(DMPM)は離散データ生成のための新しいアルゴリズムである。
時間反転過程の強度は古典的なスコア関数の離散的なアナログによって制御される。
この研究は理論の基礎と実践的応用を橋渡しし、効果的で理論的に基礎付けられた離散生成モデリングの開発を進めた。
論文 参考訳(メタデータ) (2025-02-11T20:36:23Z) - Convergence Analysis of Discrete Diffusion Model: Exact Implementation
through Uniformization [17.535229185525353]
連続マルコフ連鎖の均一化を利用したアルゴリズムを導入し、ランダムな時間点の遷移を実装した。
我々の結果は、$mathbbRd$における拡散モデルの最先端の成果と一致し、さらに$mathbbRd$設定と比較して離散拡散モデルの利点を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-12T22:26:52Z) - Fast Sampling via Discrete Non-Markov Diffusion Models with Predetermined Transition Time [49.598085130313514]
離散非マルコフ拡散モデル(DNDM)を提案する。
これにより、トレーニング不要なサンプリングアルゴリズムにより、関数評価の数を大幅に削減できる。
有限ステップサンプリングから無限ステップサンプリングへの移行について検討し、離散プロセスと連続プロセスのギャップを埋めるための新たな洞察を提供する。
論文 参考訳(メタデータ) (2023-12-14T18:14:11Z) - Observation-Guided Diffusion Probabilistic Models [41.749374023639156]
観測誘導拡散確率モデル(OGDM)と呼ばれる新しい拡散に基づく画像生成法を提案する。
本手法は,観測プロセスの指導をマルコフ連鎖と統合することにより,トレーニング目標を再構築する。
本研究では,強力な拡散モデルベースライン上での多様な推論手法を用いたトレーニングアルゴリズムの有効性を示す。
論文 参考訳(メタデータ) (2023-10-06T06:29:06Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
従属拡散過程を変調したマルコフジャンプ過程に基づくモデルを提案する。
我々は,新しい連続時間変動推定アルゴリズムを開発した。
モデル仮定と実世界の実例に基づいて,我々のアルゴリズムを広範囲に評価する。
論文 参考訳(メタデータ) (2021-09-29T15:19:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。