論文の概要: Data-driven Neural Networks for Windkessel Parameter Calibration
- arxiv url: http://arxiv.org/abs/2509.21206v2
- Date: Fri, 26 Sep 2025 16:54:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 14:23:57.791003
- Title: Data-driven Neural Networks for Windkessel Parameter Calibration
- Title(参考訳): ウィンドケッセルパラメータ校正のためのデータ駆動型ニューラルネットワーク
- Authors: Benedikt Hoock, Tobias Köppl,
- Abstract要約: そこで本研究では,Windkessel (WK) パラメータを次元的に低減した1D-0D結合血流モデルでキャリブレーションする方法を提案する。
左腕動脈の血流を模擬したデータ駆動型ニューラルネットワーク(NN)を設計した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, we propose a novel method for calibrating Windkessel (WK) parameters in a dimensionally reduced 1D-0D coupled blood flow model. To this end, we design a data-driven neural network (NN)trained on simulated blood pressures in the left brachial artery. Once trained, the NN emulates the pressure pulse waves across the entire simulated domain, i.e., over time, space and varying WK parameters, with negligible error and computational effort. To calibrate the WK parameters on a measured pulse wave, the NN is extended by dummy neurons and retrained only on these. The main objective of this work is to assess the effectiveness of the method in various scenarios -- particularly, when the exact measurement location is unknown or the data are affected by noise.
- Abstract(参考訳): 本研究では,Windkessel (WK) パラメータを次元的に低減した1D-0D結合血流モデルで校正する方法を提案する。
この目的のために、左腕動脈の模擬血圧に基づいて、データ駆動型ニューラルネットワーク(NN)を設計する。
トレーニングが完了すると、NNはシミュレーションされた領域全体、すなわち時間、空間、および様々なWKパラメータの圧力パルス波を無視可能なエラーと計算の労力でエミュレートする。
計測パルス波上でWKパラメータを校正するために、NNはダミーニューロンによって拡張され、これらのみに再訓練される。
この研究の主な目的は、様々なシナリオにおけるメソッドの有効性を評価することである。特に、正確な測定位置が不明であったり、データがノイズの影響を受けている場合である。
関連論文リスト
- Neural Velocity for hyperparameter tuning [14.916521676239894]
NeVeは、学習率を調整し、停止基準を定義する、ダイナミックなトレーニングアプローチである。
神経速度は各ニューロンの伝達関数の変化率を測定する。
論文 参考訳(メタデータ) (2025-07-07T09:32:25Z) - Reconstructing Blood Flow in Data-Poor Regimes: A Vasculature Network Kernel for Gaussian Process Regression [2.9998889086656586]
非ユークリッド空間である血管ネットワーク内のカーネルを再構築する新しい手法を提案する。
提案したカーネルは、時間的および血管間相関を符号化し、直接測定を欠いた血管における血流の再構築を可能にする。
本研究は, 単純Y字型分岐術, 腹部大動脈, ウィリス円の3症例において, モデルの性能を実証するものである。
論文 参考訳(メタデータ) (2024-03-14T15:41:15Z) - Learning Radio Environments by Differentiable Ray Tracing [56.40113938833999]
本稿では, 材料特性, 散乱, アンテナパターンの微分パラメトリゼーションによって補う, 勾配式キャリブレーション法を提案する。
提案手法は,MIMO(分散マルチインプットマルチインプット・マルチアウトプット・チャネル・サウンドア)を用いて,合成データと実世界の屋内チャネル計測の両方を用いて検証した。
論文 参考訳(メタデータ) (2023-11-30T13:50:21Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Mesh convolutional neural networks for wall shear stress estimation in
3D artery models [7.7393800633675465]
CFDと同じ有限要素表面メッシュ上で直接動作するメッシュ畳み込みニューラルネットワークを提案する。
このメッシュ上での3次元壁せん断応力ベクトルを正確に予測できることが,我々のフレキシブルディープラーニングモデルにより示されている。
論文 参考訳(メタデータ) (2021-09-10T11:32:05Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
MRV(MR resonance velocimetry)は、流体の速度場を測定するために医療や工学で広く用いられている非侵襲的な技術である。
これまでの研究では、境界(例えば血管)の形状が先駆体として知られていた。
我々は、ノイズの多いMRVデータのみを用いて、最も可能性の高い境界形状と減音速度場を推定する物理インフォームニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-16T12:56:09Z) - Real-time gravitational-wave science with neural posterior estimation [64.67121167063696]
ディープラーニングを用いた高速重力波パラメータ推定のための前例のない精度を示す。
LIGO-Virgo Gravitational-Wave Transient Catalogから8つの重力波事象を解析した。
標準推論符号と非常に密接な定量的な一致を見いだすが、推定時間がO(day)から1イベントあたり1分に短縮される。
論文 参考訳(メタデータ) (2021-06-23T18:00:05Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
バナジウムフローバッテリ(VRFB)のゼロ次元(0D)モデルにおけるパラメータ推定のための物理拘束型ディープニューラルネットワーク(PCDNN)を提案する。
そこで, PCDNN法は, 動作条件のモデルパラメータを推定し, 電圧の0Dモデル予測を改善することができることを示す。
また,PCDNNアプローチでは,トレーニングに使用しない操作条件のパラメータ値を推定する一般化能力が向上することが実証された。
論文 参考訳(メタデータ) (2021-06-21T23:42:58Z) - Transfer Learning with Convolutional Networks for Atmospheric Parameter
Retrieval [14.131127382785973]
MetOp衛星シリーズに搭載された赤外線音波干渉計(IASI)は、数値気象予測(NWP)に重要な測定値を提供する
IASIが提供する生データから正確な大気パラメータを取得することは大きな課題であるが、NWPモデルでデータを使用するには必要である。
本研究では,iasiデータから抽出した特徴を,低い高度で異なる物理変数を予測するように設計された別の統計手法への入力として使用できることを示す。
論文 参考訳(メタデータ) (2020-12-09T09:28:42Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
本研究では, 心筋灌流MR定量化のための物理インフォームドニューラルネットワーク(PINN)を提案する。
PINNは、基礎となる物理保存法則を尊重しながら、観測された拡散MRデータに適合するように訓練することができる。
論文 参考訳(メタデータ) (2020-11-25T16:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。