論文の概要: Reconstructing Blood Flow in Data-Poor Regimes: A Vasculature Network Kernel for Gaussian Process Regression
- arxiv url: http://arxiv.org/abs/2403.09758v1
- Date: Thu, 14 Mar 2024 15:41:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 21:35:10.665817
- Title: Reconstructing Blood Flow in Data-Poor Regimes: A Vasculature Network Kernel for Gaussian Process Regression
- Title(参考訳): データ・ポーア・レジームにおける血流の再構成:ガウス過程回帰のための真空ネットワークカーネル
- Authors: Shaghayegh Z. Ashtiani, Mohammad Sarabian, Kaveh Laksari, Hessam Babaee,
- Abstract要約: 非ユークリッド空間である血管ネットワーク内のカーネルを再構築する新しい手法を提案する。
提案したカーネルは、時間的および血管間相関を符号化し、直接測定を欠いた血管における血流の再構築を可能にする。
本研究は, 単純Y字型分岐術, 腹部大動脈, ウィリス円の3症例において, モデルの性能を実証するものである。
- 参考スコア(独自算出の注目度): 2.9998889086656586
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Blood flow reconstruction in the vasculature is important for many clinical applications. However, in clinical settings, the available data are often quite limited. For instance, Transcranial Doppler ultrasound (TCD) is a noninvasive clinical tool that is commonly used in the clinical settings to measure blood velocity waveform at several locations on brain's vasculature. This amount of data is grossly insufficient for training machine learning surrogate models, such as deep neural networks or Gaussian process regression. In this work, we propose a Gaussian process regression approach based on physics-informed kernels, enabling near-real-time reconstruction of blood flow in data-poor regimes. We introduce a novel methodology to reconstruct the kernel within the vascular network, which is a non-Euclidean space. The proposed kernel encodes both spatiotemporal and vessel-to-vessel correlations, thus enabling blood flow reconstruction in vessels that lack direct measurements. We demonstrate that any prediction made with the proposed kernel satisfies the conservation of mass principle. The kernel is constructed by running stochastic one-dimensional blood flow simulations, where the stochasticity captures the epistemic uncertainties, such as lack of knowledge about boundary conditions and uncertainties in vasculature geometries. We demonstrate the performance of the model on three test cases, namely, a simple Y-shaped bifurcation, abdominal aorta, and the Circle of Willis in the brain.
- Abstract(参考訳): 血管内血流の再構築は多くの臨床応用において重要である。
しかし、臨床環境では、利用可能なデータは極めて限られていることが多い。
例えば、経頭蓋ドプラ超音波(TCD)は、脳血管のいくつかの場所での血流波形を測定するために臨床環境で一般的に使用される非侵襲的な臨床ツールである。
この量のデータは、ディープニューラルネットワークやガウス過程回帰といった機械学習シュロゲートモデルのトレーニングには極めて不十分である。
本研究では,物理インフォームドカーネルに基づくガウス過程回帰手法を提案する。
非ユークリッド空間である血管ネットワーク内のカーネルを再構築する新しい手法を提案する。
提案したカーネルは時空間および容器間相関を符号化し,直接測定を欠いた血管の血流回復を可能にする。
提案したカーネルによる予測は質量原理の保存を満足することを示す。
カーネルは確率的一次元血流シミュレーションによって構築され、その確率性は境界条件に関する知識の欠如や血管幾何学における不確実性など、てんかんの不確かさを捉えている。
本研究は, 単純Y字型分岐術, 腹部大動脈, ウィリス円の3症例において, モデルの性能を実証するものである。
関連論文リスト
- Deep vectorised operators for pulsatile hemodynamics estimation in coronary arteries from a steady-state prior [2.3971720731010766]
本稿では,拍動血行動態を推定するために,機械学習を利用した時間効率な代理モデルを提案する。
本モデルでは, 震源領域の再サンプリングに依存せず, 脈動速度と圧力の正確な推定値が得られた。
論文 参考訳(メタデータ) (2024-10-15T12:24:50Z) - Physics-informed graph neural networks for flow field estimation in carotid arteries [2.0437999068326276]
循環動態量は動脈硬化などの循環器疾患にとって貴重なバイオメディカルリスク因子である。
本研究では,機械学習を利用した血行動態場推定のための代理モデルを作成する。
私たちは、基礎となる対称性と物理に関する事前情報を含むグラフニューラルネットワークをトレーニングし、トレーニングに必要なデータ量を制限する。
このことは、物理インフォームドグラフニューラルネットワークを4次元フローMRIデータを用いてトレーニングすることで、見えない頸動脈領域の血流を推定できることを示している。
論文 参考訳(メタデータ) (2024-08-13T13:09:28Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
本稿では, 拡散サンプリング法とクリロフ部分空間法を相乗的に組み合わせた, 新規で効率的な拡散サンプリング手法を提案する。
具体的には、ツイーディの公式による分母化標本における接空間がクリロフ部分空間を成すならば、その分母化データによるCGは、接空間におけるデータの整合性更新を確実に維持する。
提案手法は,従来の最先端手法よりも80倍以上高速な推論時間を実現する。
論文 参考訳(メタデータ) (2023-03-10T07:42:49Z) - Modeling and hexahedral meshing of cerebral arterial networks from
centerlines [0.0]
中心線に基づく表現は、小さな血管を持つ大きな血管ネットワークをモデル化するために広く用いられている。
中心線からCFDに適した構造を持つヘキサヘドラルメッシュを自動生成する手法を提案する。
我々は60の脳血管ネットワークのデータセットを網羅し,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2022-01-20T16:30:17Z) - Machine-Learning Identification of Hemodynamics in Coronary Arteries in
the Presence of Stenosis [0.0]
人工ニューラルネットワーク(ANN)モデルは、動脈ネットワーク内の圧力と速度を予測するために合成データを用いて訓練される。
モデルの有効性を3つの実測値を用いて検証した。
論文 参考訳(メタデータ) (2021-11-02T23:51:06Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
MRV(MR resonance velocimetry)は、流体の速度場を測定するために医療や工学で広く用いられている非侵襲的な技術である。
これまでの研究では、境界(例えば血管)の形状が先駆体として知られていた。
我々は、ノイズの多いMRVデータのみを用いて、最も可能性の高い境界形状と減音速度場を推定する物理インフォームニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-16T12:56:09Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Geometric Uncertainty in Patient-Specific Cardiovascular Modeling with
Convolutional Dropout Networks [0.0]
患者固有の心血管モデルの条件分布からサンプルを生成する新しい手法を提案する。
提案手法で導入された主な革新は、トレーニングデータから直接幾何的不確実性を学ぶ能力である。
論文 参考訳(メタデータ) (2020-09-16T00:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。