論文の概要: Incorporating priors in learning: a random matrix study under a teacher-student framework
- arxiv url: http://arxiv.org/abs/2509.22124v1
- Date: Fri, 26 Sep 2025 09:47:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 20:57:54.345439
- Title: Incorporating priors in learning: a random matrix study under a teacher-student framework
- Title(参考訳): 学習における事前の組み入れ--教師・学生の枠組みによるランダムマトリックス研究
- Authors: Malik Tiomoko, Ekkehard Schnoor,
- Abstract要約: 正規化線形回帰は機械学習の中心であるが、その情報的先行を伴う高次元挙動はいまだに理解されていない。
本研究は,MAP回帰を最大化するためのトレーニングとテストのリスクを,初めて正確に評価するものである。
我々のフレームワークは、リッジ回帰、最小二乗、および事前インフォームド推定器を統一し、ランダム行列理論を用いて、閉形式リスク公式を生成する。
- 参考スコア(独自算出の注目度): 6.744353807473373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Regularized linear regression is central to machine learning, yet its high-dimensional behavior with informative priors remains poorly understood. We provide the first exact asymptotic characterization of training and test risks for maximum a posteriori (MAP) regression with Gaussian priors centered at a domain-informed initialization. Our framework unifies ridge regression, least squares, and prior-informed estimators, and -- using random matrix theory -- yields closed-form risk formulas that expose the bias-variance-prior tradeoff, explain double descent, and quantify prior mismatch. We also identify a closed-form minimizer of test risk, enabling a simple estimator of the optimal regularization parameter. Simulations confirm the theory with high accuracy. By connecting Bayesian priors, classical regularization, and modern asymptotics, our results provide both conceptual clarity and practical guidance for learning with structured prior knowledge.
- Abstract(参考訳): 正規化線形回帰は機械学習の中心であるが、その情報的先行を伴う高次元挙動はいまだに理解されていない。
ドメインインフォームド初期化を主眼としたガウス前駆体を用いたMAP回帰の訓練とテストリスクについて,最初の正確な漸近的評価を行った。
我々のフレームワークは、リッジ回帰、最小二乗、および事前インフォームド推定器を統一し、ランダム行列理論を用いて、バイアス-分散-優先トレードオフを露呈し、二重降下を説明し、事前ミスマッチを定量化する閉形式リスク公式を導出する。
また、テストリスクの閉形式最小化器を同定し、最適な正規化パラメータを簡易に推定する。
シミュレーションは、その理論を高い精度で確認する。
ベイズ先行学、古典正則化、近代漸近学を結びつけることにより、構造化された事前知識で学ぶための概念的明瞭さと実践的指導を提供する。
関連論文リスト
- Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
独自の予測と潜在的にノイズの多いラベルを使ってモデルをトレーニングすることは、モデルパフォーマンスを改善するためのよく知られた戦略である。
本稿では,モデルの予測と提供ラベルを最適に組み合わせる方法について論じる。
我々の主な貢献は、現在のモデルの予測と与えられたラベルを組み合わせたベイズ最適集約関数の導出である。
論文 参考訳(メタデータ) (2025-05-21T07:16:44Z) - Model-Robust and Adaptive-Optimal Transfer Learning for Tackling Concept Shifts in Nonparametric Regression [7.243632426715939]
本稿では、最適性を適応的に達成しつつ、モデルの誤特定に対して頑健な転写学習手順を提案する。
仮説伝達学習アルゴリズムの一般的なクラスにおいて、ガウス核を特定するための過剰リスクの適応収束率を導出する。
論文 参考訳(メタデータ) (2025-01-18T20:33:37Z) - A Statistical Theory of Regularization-Based Continual Learning [10.899175512941053]
線形回帰タスクの順序に基づく正規化に基づく連続学習の統計的解析を行う。
まず、全てのデータが同時に利用可能であるかのように得られたオラクル推定器の収束率を導出する。
理論解析の副産物は、早期停止と一般化された$ell$-regularizationの等価性である。
論文 参考訳(メタデータ) (2024-06-10T12:25:13Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - PROMISE: Preconditioned Stochastic Optimization Methods by Incorporating Scalable Curvature Estimates [17.777466668123886]
PROMISE ($textbfPr$econditioned $textbfO$ptimization $textbfM$ethods by $textbfI$ncorporating $textbfS$calable Curvature $textbfE$stimates)はスケッチベースの事前条件勾配アルゴリズムである。
PROMISEには、SVRG、SAGA、およびKatyushaのプレコンディション版が含まれている。
論文 参考訳(メタデータ) (2023-09-05T07:49:10Z) - Understanding Incremental Learning of Gradient Descent: A Fine-grained
Analysis of Matrix Sensing [74.2952487120137]
GD(Gradient Descent)は、機械学習モデルにおいて、良い一般化に対する暗黙のバイアスをもたらすと考えられている。
本稿では,行列センシング問題に対するGDのダイナミクスを詳細に解析する。
論文 参考訳(メタデータ) (2023-01-27T02:30:51Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - Learning Prediction Intervals for Regression: Generalization and
Calibration [12.576284277353606]
不確実性定量のための回帰における予測間隔の生成について検討する。
我々は一般学習理論を用いて、リプシッツ連続性とVC-サブグラフクラスを含む最適性と実現可能性のトレードオフを特徴づける。
我々は既存のベンチマークと比べてテスト性能の点で、区間生成とキャリブレーションアルゴリズムの強みを実証的に示している。
論文 参考訳(メタデータ) (2021-02-26T17:55:30Z) - The Predictive Normalized Maximum Likelihood for Over-parameterized
Linear Regression with Norm Constraint: Regret and Double Descent [12.929639356256928]
現代の機械学習モデルは、予測規則の複雑さとその一般化能力の間のトレードオフに従わないことを示す。
最近提案された予測正規化最大値 (pNML) は、個々のデータに対するmin-max後悔解である。
我々は,pNML後悔を合成データ上でのポイントワイド学習可能性尺度として使用し,二重発生現象の予測に成功していることを示す。
論文 参考訳(メタデータ) (2021-02-14T15:49:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。