論文の概要: Enhancing Cluster Scheduling in HPC: A Continuous Transfer Learning for Real-Time Optimization
- arxiv url: http://arxiv.org/abs/2509.22701v1
- Date: Mon, 22 Sep 2025 12:27:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:18.80716
- Title: Enhancing Cluster Scheduling in HPC: A Continuous Transfer Learning for Real-Time Optimization
- Title(参考訳): HPCにおけるクラスタスケジューリングの強化 - リアルタイム最適化のための継続的トランスファー学習
- Authors: Leszek Sliwko, Jolanta Mizera-Pietraszko,
- Abstract要約: 本研究では,ノード親和性制約に着目し,クラスタシステムのタスクスケジューリングを最適化するための機械学習支援手法を提案する。
提案した連続移動学習モデルは、運用中に動的に進化し、再学習の必要性を最小限に抑える。
Google Cluster Dataに基づいて評価されたこのモデルは、99%以上の精度を実現し、計算オーバーヘッドを低減し、制約されたタスクのスケジューリング遅延を改善する。
- 参考スコア(独自算出の注目度): 0.42970700836450487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents a machine learning-assisted approach to optimize task scheduling in cluster systems, focusing on node-affinity constraints. Traditional schedulers like Kubernetes struggle with real-time adaptability, whereas the proposed continuous transfer learning model evolves dynamically during operations, minimizing retraining needs. Evaluated on Google Cluster Data, the model achieves over 99% accuracy, reducing computational overhead and improving scheduling latency for constrained tasks. This scalable solution enables real-time optimization, advancing machine learning integration in cluster management and paving the way for future adaptive scheduling strategies.
- Abstract(参考訳): 本研究では,ノード親和性制約に着目し,クラスタシステムのタスクスケジューリングを最適化するための機械学習支援手法を提案する。
Kubernetesのような従来のスケジューラは、リアルタイムの適応性に苦労する一方で、提案された継続的移行学習モデルは、運用中に動的に進化し、再トレーニングの必要性を最小限にする。
Google Cluster Dataに基づいて評価されたこのモデルは、99%以上の精度を実現し、計算オーバーヘッドを低減し、制約されたタスクのスケジューリング遅延を改善する。
このスケーラブルなソリューションは、リアルタイムの最適化、クラスタ管理における機械学習統合の進歩、今後の適応スケジューリング戦略への道を開くことを可能にします。
関連論文リスト
- Improvement of Optimization using Learning Based Models in Mixed Integer Linear Programming Tasks [2.1111289252277197]
混合線形プログラム(MILP)は、建設、製造、物流といった重要な産業において計画とスケジューリングの問題を解決するための重要なツールである。
本稿では,グラフニューラルネットワーク(GNN)の学習に行動クローニング(BC)と強化学習(RL)を活用する学習ベースフレームワークを提案する。
本手法は,ソリューションの品質と実現可能性を維持しつつ,従来の手法と比較して最適化時間と分散を低減させる。
論文 参考訳(メタデータ) (2025-05-17T01:31:53Z) - Prediction-Assisted Online Distributed Deep Learning Workload Scheduling in GPU Clusters [24.845122459974466]
本稿では,A-SRPT(Adaptive Shortest-Remaining-Time-first)スケジューリングアルゴリズムを提案する。
ヘテロジニアスディープニューラルネットワーク(DNN)モデルに対応するグラフとして各ジョブをモデル化することにより、A-SRPTはジョブを利用可能なGPUに戦略的に割り当てる。
A-SRPTは複雑なスケジューリング問題を単一マシンのインスタンスにマッピングし、プリエンプティブな "shortest-remaining-processing-time-first" 戦略によって最適に対処する。
論文 参考訳(メタデータ) (2025-01-09T20:19:01Z) - Learning for Cross-Layer Resource Allocation in MEC-Aided Cell-Free Networks [71.30914500714262]
移動エッジコンピューティング(MEC)を援用したセルフリーネットワーク上でのクロスレイヤリソース割り当ては、データレートを促進するために、送信およびコンピューティングリソースを十分に活用することができる。
深層学習の観点からMEC支援セルフリーネットワークのサブキャリア配置とビームフォーミング最適化について検討した。
論文 参考訳(メタデータ) (2024-12-21T10:18:55Z) - Reinforcement Learning for Adaptive Resource Scheduling in Complex System Environments [8.315191578007857]
そこで本研究では,Q-ラーニングに基づく新しいコンピュータシステムの性能最適化と適応型ワークロード管理スケジューリングアルゴリズムを提案する。
対照的に、強化学習アルゴリズムであるQラーニングは、システムの状態変化から継続的に学習し、動的スケジューリングとリソース最適化を可能にする。
この研究は、将来の大規模システムにおけるAI駆動適応スケジューリングの統合の基礎を提供し、システムのパフォーマンスを高め、運用コストを削減し、持続可能なエネルギー消費をサポートするスケーラブルでインテリジェントなソリューションを提供する。
論文 参考訳(メタデータ) (2024-11-08T05:58:09Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
そこで本研究では,事前訓練した重みを効率よく微調整する直交微調整法を導入し,頑健さと一般化の強化を実現した。
自己正規化戦略は、OrthSRと呼ばれるVLMのゼロショット一般化の観点から安定性を維持するためにさらに活用される。
筆者らはCLIPとCoOpを再検討し,少数の画像のクラスフィシエーションシナリオにおけるモデルの改善を効果的に行う。
論文 参考訳(メタデータ) (2024-07-11T10:35:53Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
我々は,長期的エネルギー制約のある分散エッジデバイスにおいて,トレーニングデータを時間とともにランダムに生成するフェデレーションエッジ学習(FEEL)システムを検討する。
限られた通信リソースとレイテンシ要件のため、各イテレーションでローカルトレーニングプロセスに参加するのはデバイスのサブセットのみである。
論文 参考訳(メタデータ) (2023-05-02T07:41:16Z) - COMET: A Comprehensive Cluster Design Methodology for Distributed Deep Learning Training [42.514897110537596]
現代のディープラーニング(DL)モデルは、トレーニングする専門的でハイエンドなノードの大規模なクラスタを必要とするサイズに成長しています。
このようなクラスタを設計してパフォーマンスと利用の両方を最大化します。
本稿では,並列化戦略と鍵クラスタリソースのプロビジョニングが分散DLトレーニングのパフォーマンスに与える影響を共同で研究する,総合的なクラスタ設計方法論とワークフローであるCOMETを紹介する。
論文 参考訳(メタデータ) (2022-11-30T00:32:37Z) - Hyper-Learning for Gradient-Based Batch Size Adaptation [2.944323057176686]
バッチサイズをスケジューリングして拡大することは、ディープニューラルネットワークをトレーニングする際のノイズを制御する効果的な戦略である。
学習可能なスケジューリングのためのバッチサイズ適応を行うためのアルゴリズムとしてArbiterを導入する。
いくつかの実験でArbiterの有効性を実証した。
論文 参考訳(メタデータ) (2022-05-17T11:01:14Z) - MCDS: AI Augmented Workflow Scheduling in Mobile Edge Cloud Computing
Systems [12.215537834860699]
近年,エッジコンピューティングプラットフォームの低応答時間を利用してアプリケーション品質・オブ・サービス(QoS)を最適化するスケジューリング手法が提案されている。
本稿では,Deep Surrogate Models を用いたモンテカルロ学習を用いて,モバイルエッジクラウドコンピューティングシステムにおけるワークフローアプリケーションを効率的にスケジューリングする手法を提案する。
論文 参考訳(メタデータ) (2021-12-14T10:00:01Z) - Adaptive Serverless Learning [114.36410688552579]
本研究では,データから学習率を動的に計算できる適応型分散学習手法を提案する。
提案アルゴリズムは, 作業者数に対して線形高速化が可能であることを示す。
通信効率のオーバーヘッドを低減するため,通信効率のよい分散訓練手法を提案する。
論文 参考訳(メタデータ) (2020-08-24T13:23:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。