論文の概要: One-Shot Multi-Label Causal Discovery in High-Dimensional Event Sequences
- arxiv url: http://arxiv.org/abs/2509.23213v1
- Date: Sat, 27 Sep 2025 09:49:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.107024
- Title: One-Shot Multi-Label Causal Discovery in High-Dimensional Event Sequences
- Title(参考訳): 高次元イベント系列におけるワンショットマルチラベル因果発見
- Authors: Hugo Math, Robin Schön, Rainer Lienhart,
- Abstract要約: 提案するOSCARは1ショットの因果自己回帰法であり,連続するマルコフ境界を推定する。
29,100のイベントと474のラベルを持つ現実世界の自動車データセットでは、OSCARは数分で解釈可能な因果構造を復元する。
- 参考スコア(独自算出の注目度): 20.072624123275528
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Understanding causality in event sequences with thousands of sparse event types is critical in domains such as healthcare, cybersecurity, or vehicle diagnostics, yet current methods fail to scale. We present OSCAR, a one-shot causal autoregressive method that infers per-sequence Markov Boundaries using two pretrained Transformers as density estimators. This enables efficient, parallel causal discovery without costly global CI testing. On a real-world automotive dataset with 29,100 events and 474 labels, OSCAR recovers interpretable causal structures in minutes, while classical methods fail to scale, enabling practical scientific diagnostics at production scale.
- Abstract(参考訳): 何千ものスパースイベントタイプのイベントシーケンスにおける因果関係を理解することは、医療、サイバーセキュリティ、車両診断などの領域では重要であるが、現在の方法はスケールできない。
我々は,2つの事前学習したトランスフォーマーを密度推定器として,シーケンスごとのマルコフ境界を推定するワンショット因果自己回帰法OSCARを提案する。
これにより、コストのかかるグローバルCIテストなしで、効率的で並列因果検出が可能になる。
29,100のイベントと474のラベルを持つ現実世界の自動車データセットでは、OSCARは解釈可能な因果構造を数分で復元する。
関連論文リスト
- Towards Practical Multi-label Causal Discovery in High-Dimensional Event Sequences via One-Shot Graph Aggregation [14.409508347156397]
CARGOは、スパースで高次元のイベントシーケンスに対するスケーラブルなマルチラベル因果探索法である。
並列に、シーケンス毎の1ショット因果グラフを推論し、適応周波数融合を用いてそれらを集約し、ラベルのグローバルマルコフ境界を再構築する。
29,100以上のユニークなイベントタイプと474のアンバランスなラベルを持つ実世界の自動車故障予測データセットに対する我々の結果は、CARGOが構造化推論を行う能力を示している。
論文 参考訳(メタデータ) (2025-09-23T14:58:50Z) - Large-Scale Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
本稿では,観測結果から対象変数の因果変数を推定する機械学習手法を提案する。
ローカル推論戦略を用いることで、我々のアプローチは変数数に線形な複雑さを伴ってスケールし、数千の変数に効率的にスケールアップする。
大規模遺伝子制御ネットワークにおける因果関係の同定に優れた性能を示す実験結果が得られた。
論文 参考訳(メタデータ) (2024-08-29T02:21:11Z) - Multi-scale Fusion Fault Diagnosis Method Based on Two-Dimensionaliztion
Sequence in Complex Scenarios [0.0]
転がり軸受は回転機械において重要な要素であり、その欠陥は深刻な損傷を引き起こす可能性がある。
異常の早期発見は破滅的な事故を防ぐために不可欠である。
従来のインテリジェントな手法は時系列データを解析するのに用いられてきたが、現実のシナリオでは、センサデータはノイズが多く、時間領域で正確に特徴付けることはできない。
本稿では,産業シナリオに展開するためのマルチスケール機能融合モデルとディープラーニング圧縮技術を用いて,畳み込みニューラルネットワークの改良手法を提案する。
論文 参考訳(メタデータ) (2023-04-11T13:05:50Z) - Abnormal Event Detection via Hypergraph Contrastive Learning [54.80429341415227]
異常事象検出は多くの実アプリケーションにおいて重要な役割を果たす。
本稿では,分散異種情報ネットワークにおける異常事象検出問題について検討する。
AEHCLと呼ばれる新しいハイパーグラフコントラスト学習法が,異常事象のパターンをフルに捉えるために提案されている。
論文 参考訳(メタデータ) (2023-04-02T08:23:20Z) - A Bi-LSTM Autoencoder Framework for Anomaly Detection -- A Case Study of
a Wind Power Dataset [2.094022863940315]
異常(英: Anomalies)とは、通常および同質の事象から逸脱するデータポイントまたはイベントを指す。
本研究では,Bi-LSTMアーキテクチャとAutoencoderを組み合わせた時系列異常検出フレームワークを提案する。
Bi-LSTM Autoencoderモデルは96.79%の分類精度を達成し、より一般的なLSTM Autoencoderモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-03-17T00:24:28Z) - Are we certain it's anomalous? [57.729669157989235]
時系列における異常検出は、高度に非線形な時間的相関のため、異常は稀であるため、複雑なタスクである。
本稿では,異常検出(HypAD)におけるハイパボリック不確実性の新しい利用法を提案する。
HypADは自己指導で入力信号を再構築する。
論文 参考訳(メタデータ) (2022-11-16T21:31:39Z) - BaCaDI: Bayesian Causal Discovery with Unknown Interventions [118.93754590721173]
BaCaDIは因果構造と介入の両方の潜在確率的表現の連続的な空間で機能する。
BaCaDIは、合成因果発見タスクとシミュレートされた遺伝子発現データの実験において、因果構造と介入ターゲットを識別する関連手法より優れている。
論文 参考訳(メタデータ) (2022-06-03T16:25:48Z) - A Deep Learning Approach for Active Anomaly Detection of Extragalactic
Transients [1.7152709285783647]
本稿では,シミュレーションしたルビン天文台の銀河外過渡現象をエンコードする変分リカレントオートエンコーダニューラルネットワークを提案する。
1,129,184のイベントを,孤立林を用いて推定した異常スコアに基づいてランク付けした。
我々のアルゴリズムは、ピーク前にこれらの過渡現象を異常と識別することができ、リアルタイムの追従研究を可能にしている。
論文 参考訳(メタデータ) (2021-03-22T18:02:19Z) - Recomposition vs. Prediction: A Novel Anomaly Detection for Discrete
Events Based On Autoencoder [5.781280693720236]
侵入検知の分野で最も難しい問題の1つは、離散イベントログの異常検出である。
離散イベントログのDeep Autoencoderベースの異常検出手法であるDabLogを提案する。
解析(符号化)と再構成(復号化)により、シーケンスが正常または異常かどうかを判定します。
論文 参考訳(メタデータ) (2020-12-27T16:31:05Z) - Multi-Scale One-Class Recurrent Neural Networks for Discrete Event
Sequence Anomaly Detection [63.825781848587376]
本稿では,離散イベントシーケンス中の異常を検出する1クラスリカレントニューラルネットワークOC4Seqを提案する。
具体的には、OC4Seqは離散イベントシーケンスを遅延空間に埋め込み、異常を容易に検出することができる。
論文 参考訳(メタデータ) (2020-08-31T04:48:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。