論文の概要: Neuroplasticity-inspired dynamic ANNs for multi-task demand forecasting
- arxiv url: http://arxiv.org/abs/2509.24495v1
- Date: Mon, 29 Sep 2025 09:08:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.887197
- Title: Neuroplasticity-inspired dynamic ANNs for multi-task demand forecasting
- Title(参考訳): マルチタスク需要予測のための神経可塑性による動的ANN
- Authors: Mateusz Żarski, Sławomir Nowaczyk,
- Abstract要約: 本稿では、ニューロプラスティック・マルチタスクネットワーク(NMT-Net)と呼ばれるマルチタスク需要予測のための動的ニューラルネットワーク(D-ANN)の新しいアプローチを提案する。
提案手法は, 生体系にみられる神経可塑性にインスパイアされた, トレーニング中の計算グラフの構造適応性を実現する。
NMT-Netは、時系列予測におけるマルチタスクおよび連続学習のためのスケーラブルで適応可能なソリューションを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a novel approach to Dynamic Artificial Neural Networks (D-ANNs) for multi-task demand forecasting called Neuroplastic Multi-Task Network (NMT-Net). Unlike conventional methods focusing on inference-time dynamics or computational efficiency, our proposed method enables structural adaptability of the computational graph during training, inspired by neuroplasticity as seen in biological systems. Each new task triggers a dynamic network adaptation, including similarity-based task identification and selective training of candidate ANN heads, which are then assessed and integrated into the model based on their performance. We evaluated our framework using three real-world multi-task demand forecasting datasets from Kaggle. We demonstrated its superior performance and consistency, achieving lower RMSE and standard deviation compared to traditional baselines and state-of-the-art multi-task learning methods. NMT-Net offers a scalable, adaptable solution for multi-task and continual learning in time series prediction. The complete code for NMT-Net is available from our GitHub repository.
- Abstract(参考訳): 本稿では,Nuroplastic Multi-Task Network (NMT-Net) と呼ばれるマルチタスク需要予測のための動的ニューラルネットワーク (D-ANN) について紹介する。
従来の推論時力学や計算効率に着目した手法とは異なり,本手法は生体系にみられる神経可塑性にインスパイアされた,トレーニング中の計算グラフの構造適応性を実現する。
それぞれのタスクは、類似性に基づくタスク識別や、候補のANNヘッドの選択的なトレーニングを含む動的ネットワーク適応をトリガーし、そのパフォーマンスに基づいてモデルに評価および統合される。
我々はKaggleの3つの実世界のマルチタスク需要予測データセットを用いて、我々のフレームワークを評価した。
従来のベースラインや最先端のマルチタスク学習手法と比較して,RMSEと標準偏差の低い性能と整合性を実証した。
NMT-Netは、時系列予測におけるマルチタスクおよび連続学習のためのスケーラブルで適応可能なソリューションを提供する。
NMT-Netの完全なコードは、GitHubリポジトリから入手可能です。
関連論文リスト
- UniSTD: Towards Unified Spatio-Temporal Learning across Diverse Disciplines [64.84631333071728]
本稿では,時間的モデリングのためのトランスフォーマーベースの統合フレームワークであるbfUnistageを紹介する。
我々の研究は、タスク固有の視覚テキストが時間学習のための一般化可能なモデルを構築することができることを示した。
また、時間的ダイナミクスを明示的に組み込むための時間的モジュールも導入する。
論文 参考訳(メタデータ) (2025-03-26T17:33:23Z) - Meta-Sparsity: Learning Optimal Sparse Structures in Multi-task Networks through Meta-learning [4.462334751640166]
Meta-sparsityは、ディープニューラルネットワーク(DNN)がマルチタスク学習環境で最適なスパース共有構造を生成することを可能にする、モデルのスパーシティを学習するためのフレームワークである。
Model Agnostic Meta-Learning (MAML)に触発され、マルチタスクシナリオにおける共有パラメータと最適なスパースパラメータの学習に重点を置いている。
メタスパーシティーの有効性は、2つのデータセットに対する広範な実験によって厳格に評価されている。
論文 参考訳(メタデータ) (2025-01-21T13:25:32Z) - Self Expanding Convolutional Neural Networks [1.4330085996657045]
本稿では,学習中の畳み込みニューラルネットワーク(CNN)を動的に拡張する新しい手法を提案する。
我々は、単一のモデルを動的に拡張する戦略を採用し、様々な複雑さのレベルでチェックポイントの抽出を容易にする。
論文 参考訳(メタデータ) (2024-01-11T06:22:40Z) - ATE-SG: Alternate Through the Epochs Stochastic Gradient for Multi-Task Neural Networks [44.99833362998488]
本稿では,ハードパラメータ共有マルチタスクニューラルネットワーク(MTNN)のための新しい代替トレーニング手法を提案する。
提案した代替トレーニング手法では,タスク固有の重みをエポックを通じて交互に更新し,モデルのマルチヘッドアーキテクチャを活用する。
実証実験では、訓練の正規化と計算要求の削減が実証された。
論文 参考訳(メタデータ) (2023-12-26T21:33:03Z) - Dynamic Neural Network for Multi-Task Learning Searching across Diverse
Network Topologies [14.574399133024594]
多様なグラフトポロジを持つ複数のタスクに対して最適化された構造を探索する新しいMTLフレームワークを提案する。
我々は、トポロジ的に多様なタスク適応構造を構築するために、読み出し/読み出し層を備えたDAGベースの制限付き中央ネットワークを設計する。
論文 参考訳(メタデータ) (2023-03-13T05:01:50Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Neural Routing in Meta Learning [9.070747377130472]
入力タスクに条件付けされたモデルの部分のみを選択的に使用することにより,現在のメタ学習アルゴリズムのモデル性能を向上させることを目指している。
本稿では、バッチ正規化層におけるスケーリング係数を活用することにより、深層畳み込みニューラルネットワーク(CNN)におけるタスク依存の動的ニューロン選択を研究するアプローチについて述べる。
提案手法であるニューラルルーティング・イン・メタラーニング(NRML)は,数ショットの分類タスクにおいて,既知のメタラーニングベースラインの1つである。
論文 参考訳(メタデータ) (2022-10-14T16:31:24Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
グラフ畳み込みネットワークは、構造化されたデータポイント間の関係をキャプチャするための最も有望なアプローチである。
マルチタスク方式でグラフベースニューラルネットワークモデルを学習するための3つの新しい自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2020-11-14T11:09:51Z) - DyNODE: Neural Ordinary Differential Equations for Dynamics Modeling in
Continuous Control [0.0]
本稿では,ニューラル常微分方程式の枠組みに制御を組み込むことにより,システムの基盤となる力学を捉える新しい手法を提案する。
以上の結果から,アクター批判強化学習アルゴリズムと組み合わせた単純なDyNODEアーキテクチャが,標準ニューラルネットワークより優れていることが示唆された。
論文 参考訳(メタデータ) (2020-09-09T12:56:58Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
我々は,近年のディープラーニング(DL)の進歩を反映した,新しいディープ・コラボレーティブなNOMAスキームを開発する。
我々は,システム全体を包括的に最適化できるように,新しいハイブリッドカスケードディープニューラルネットワーク(DNN)アーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-07-27T12:38:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。