論文の概要: On Spectral Learning for Odeco Tensors: Perturbation, Initialization, and Algorithms
- arxiv url: http://arxiv.org/abs/2509.25126v1
- Date: Mon, 29 Sep 2025 17:45:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:20.178698
- Title: On Spectral Learning for Odeco Tensors: Perturbation, Initialization, and Algorithms
- Title(参考訳): オデコテンソルのスペクトル学習について:摂動・初期化・アルゴリズム
- Authors: Arnab Auddy, Ming Yuan,
- Abstract要約: 分解可能な(deodeco)テンソルのスペクトル学習を行う。
統計的限界、幾何学、ロバスト性の間の相互作用に焦点を当てる。
- 参考スコア(独自算出の注目度): 4.04411589138781
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study spectral learning for orthogonally decomposable (odeco) tensors, emphasizing the interplay between statistical limits, optimization geometry, and initialization. Unlike matrices, recovery for odeco tensors does not hinge on eigengaps, yielding improved robustness under noise. While iterative methods such as tensor power iterations can be statistically efficient, initialization emerges as the main computational bottleneck. We investigate perturbation bounds, non-convex optimization analysis, and initialization strategies, clarifying when efficient algorithms attain statistical limits and when fundamental barriers remain.
- Abstract(参考訳): 直交分解可能な(deodeco)テンソルのスペクトル学習について検討し,統計的制限,最適化幾何,初期化との相互作用を強調した。
行列とは異なり、オデコテンソルの回復は固有ギャップをヒンジしないため、ノイズ下での堅牢性が向上する。
テンソルパワーイテレーションのような反復的手法は統計的に効率的であるが、初期化は主要な計算ボトルネックとして現れる。
本研究では, 摂動境界, 非凸最適化解析, 初期化戦略について検討し, アルゴリズムが統計的限界に達し, 基本障壁がいつ残っているかを明らかにする。
関連論文リスト
- Revisit CP Tensor Decomposition: Statistical Optimality and Fast Convergence [6.724750970258851]
統計学的観点からカノニカルポリアディクス(CP)テンソル分解を再検討する。
本稿では,信号+雑音モデルに基づくAlternating Least Squares(ALS)の包括的理論的解析を行う。
論文 参考訳(メタデータ) (2025-05-29T03:42:03Z) - Outlier-aware Tensor Robust Principal Component Analysis with Self-guided Data Augmentation [21.981038455329013]
適応重み付けを用いた自己誘導型データ拡張手法を提案する。
本研究では,最先端手法と比較して精度と計算効率の両面での改善を示す。
論文 参考訳(メタデータ) (2025-04-25T13:03:35Z) - A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
そこで本研究では,未知の信号の復元を課題とする,ロバストな位相探索問題を提案する。
提案するオラクルは、単純な勾配ステップと外れ値を用いて、計算学的スペクトル降下を回避している。
論文 参考訳(メタデータ) (2024-09-07T06:37:23Z) - Discretize Relaxed Solution of Spectral Clustering via a Non-Heuristic
Algorithm [77.53604156112144]
我々は、元の問題と離散化アルゴリズムを橋渡しする1次項を開発する。
非ヒューリスティック法は元のグラフ切断問題を認識しているため、最終的な離散解の方が信頼性が高い。
論文 参考訳(メタデータ) (2023-10-19T13:57:38Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
AUPRC(Area Under the Precision-Recall Curve)の最適化は、機械学習にとって重要な問題である。
本研究では, AUPRC最適化の単依存一般化における最初の試行について述べる。
3つの画像検索データセットの実験は、我々のフレームワークの有効性と健全性に言及する。
論文 参考訳(メタデータ) (2022-09-27T09:06:37Z) - Fast and Provable Tensor Robust Principal Component Analysis via Scaled
Gradient Descent [30.299284742925852]
本稿では、テンソルロバスト主成分分析(RPCA)に取り組む。
希少な腐敗によって汚染された観測から低ランクのテンソルを回収することを目的としている。
提案アルゴリズムは, 最先端行列やテンソルRPCAアルゴリズムよりも, より優れた, よりスケーラブルな性能を実現する。
論文 参考訳(メタデータ) (2022-06-18T04:01:32Z) - Low-rank Tensor Learning with Nonconvex Overlapped Nuclear Norm
Regularization [44.54772242784423]
低ランク学習行列に対する効率的な非正規化アルゴリズムを開発した。
提案アルゴリズムは、高価な折り畳み/折り畳み問題を回避することができる。
実験の結果,提案アルゴリズムは既存の状態よりも効率的で空間が広いことがわかった。
論文 参考訳(メタデータ) (2022-05-06T07:47:10Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation
from Incomplete Measurements [30.395874385570007]
基本的な課題は、高度に不完全な測定からテンソルを忠実に回収することである。
タッカー分解におけるテンソル因子を直接回復するアルゴリズムを開発した。
2つの正準問題に対する基底真理テンソルの線形独立率で確実に収束することを示す。
論文 参考訳(メタデータ) (2021-04-29T17:44:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。