論文の概要: Message passing-based inference in an autoregressive active inference agent
- arxiv url: http://arxiv.org/abs/2509.25482v1
- Date: Mon, 29 Sep 2025 20:38:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:04.314011
- Title: Message passing-based inference in an autoregressive active inference agent
- Title(参考訳): 自己回帰型アクティブ推論エージェントにおけるメッセージパッシングに基づく推論
- Authors: Wouter M. Kouw, Tim N. Nisslbeck, Wouter L. N. Nuijten,
- Abstract要約: 本稿では,因子グラフ上のメッセージパッシングという形で,自己回帰型アクティブ推論エージェントの設計を提案する。
提案するエージェントはロボットナビゲーションタスクで検証され,探索とエクスプロイトを実証する。
古典的な最適制御器と比較して、エージェントは予測の不確実性に基づいて動作を変調し、後から到着するが、ロボットのダイナミクスをより良くモデル化する。
- 参考スコア(独自算出の注目度): 1.7778609937758325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the design of an autoregressive active inference agent in the form of message passing on a factor graph. Expected free energy is derived and distributed across a planning graph. The proposed agent is validated on a robot navigation task, demonstrating exploration and exploitation in a continuous-valued observation space with bounded continuous-valued actions. Compared to a classical optimal controller, the agent modulates action based on predictive uncertainty, arriving later but with a better model of the robot's dynamics.
- Abstract(参考訳): 本稿では,因子グラフ上のメッセージパッシングという形で,自己回帰型アクティブ推論エージェントの設計を提案する。
期待される自由エネルギーは計画グラフに分散される。
提案手法は, ロボットナビゲーション作業において, 連続値の観測空間における探索と利用を実証し, 境界値の連続値の操作で検証する。
古典的な最適制御器と比較して、エージェントは予測の不確実性に基づいて動作を変調し、後から到着するが、ロボットのダイナミクスをより良くモデル化する。
関連論文リスト
- Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - Disentangled Neural Relational Inference for Interpretable Motion
Prediction [38.40799770648501]
グラフベース表現と時系列モデルを統合した変分自動エンコーダフレームワークを開発した。
本モデルでは,対話を特徴付ける解釈可能なエッジ特徴を付加した動的相互作用グラフを推論する。
シミュレーションと実世界の両方のデータセットに関する広範な実験を通じて、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2024-01-07T22:49:24Z) - Smooth-Trajectron++: Augmenting the Trajectron++ behaviour prediction
model with smooth attention [0.0]
本研究では,注目モジュールにスムーズな項を組み込んだトラジェクトリ予測モデルであるTrjectron++について検討する。
この注意機構は、注意切り替えの限界を示す認知科学の研究にインスパイアされた人間の注意を模倣する。
得られたSmooth-Trajectron++モデルの性能を評価し、様々なベンチマークで元のモデルと比較する。
論文 参考訳(メタデータ) (2023-05-31T09:19:55Z) - A Neural Active Inference Model of Perceptual-Motor Learning [62.39667564455059]
アクティブ推論フレームワーク(英: active inference framework、AIF)は、現代の神経科学を基盤とした、有望な新しい計算フレームワークである。
本研究では,ヒトの視覚行動指導において,AIFが期待する役割を捉える能力をテストする。
本稿では,多次元世界状態から自由エネルギーの一次元分布にマッピングする先行関数の新たな定式化について述べる。
論文 参考訳(メタデータ) (2022-11-16T20:00:38Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
軌道予測のための最近の深層学習手法は有望な性能を示す。
そのようなブラックボックスモデルが実際にどのモデルを予測するために使うのかは、まだ不明である。
本稿では,モデル性能に対する異なるキューの貢献度を定量化する手法を提案する。
論文 参考訳(メタデータ) (2021-10-11T14:24:15Z) - Leveraging Neural Network Gradients within Trajectory Optimization for
Proactive Human-Robot Interactions [32.57882479132015]
本稿では, トラジェクトリ最適化(TO)の解釈可能性と柔軟性を, 最先端の人間のトラジェクトリ予測モデルの予測能力と融合する枠組みを提案する。
我々は,最大10人の歩行者の群集を安全に効率的に移動させるロボットを必要とするマルチエージェントシナリオにおいて,我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-12-02T08:43:36Z) - Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable
Semantic Representations [81.05412704590707]
本稿では,自動運転車の協調認識,予測,動作計画を行うエンド・ツー・エンドの学習可能なネットワークを提案する。
私たちのネットワークは、人間のデモからエンドツーエンドに学習されます。
論文 参考訳(メタデータ) (2020-08-13T14:40:46Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
本稿では,マルチエージェント軌道予測のためのジェネリック生成ニューラルシステムを提案する。
また、車両軌道予測に効率的なキネマティック拘束層を応用した。
提案システムは,軌道予測のための3つの公開ベンチマークデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-14T20:11:13Z) - Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data [37.176411554794214]
人間の動きに関する推論は、安全で社会的に認識されたロボットナビゲーションにとって重要な前提条件である。
我々は,多種多様なエージェントの軌道を予測できるモジュール型グラフ構造化リカレントモデルであるTrajectron++を提案する。
実世界の軌道予測データセットにおいて,その性能を実証する。
論文 参考訳(メタデータ) (2020-01-09T16:47:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。