論文の概要: Data-to-Energy Stochastic Dynamics
- arxiv url: http://arxiv.org/abs/2509.26364v1
- Date: Tue, 30 Sep 2025 15:03:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 14:45:00.177157
- Title: Data-to-Energy Stochastic Dynamics
- Title(参考訳): データからエネルギーへの確率力学
- Authors: Kirill Tamogashev, Nikolay Malkin,
- Abstract要約: 正規化されていない密度によって1つ(または両方)の分布が与えられるとき、Schr"odinger Bridgeをモデル化するための最初の一般的な方法を提案する。
提案アルゴリズムは,非政治強化学習の最近の発展に触発されたデータフリーケースに対する反復比例フィッティング(IPF)手順の一般化に依存している。
提案したデータ・トゥ・エネルギIPFの合成問題に対する有効性を示し,マルチモーダル分布間の輸送をうまく学習できることを見出した。
- 参考スコア(独自算出の注目度): 16.394074432826823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Schr\"odinger bridge problem is concerned with finding a stochastic dynamical system bridging two marginal distributions that minimises a certain transportation cost. This problem, which represents a generalisation of optimal transport to the stochastic case, has received attention due to its connections to diffusion models and flow matching, as well as its applications in the natural sciences. However, all existing algorithms allow to infer such dynamics only for cases where samples from both distributions are available. In this paper, we propose the first general method for modelling Schr\"odinger bridges when one (or both) distributions are given by their unnormalised densities, with no access to data samples. Our algorithm relies on a generalisation of the iterative proportional fitting (IPF) procedure to the data-free case, inspired by recent developments in off-policy reinforcement learning for training of diffusion samplers. We demonstrate the efficacy of the proposed data-to-energy IPF on synthetic problems, finding that it can successfully learn transports between multimodal distributions. As a secondary consequence of our reinforcement learning formulation, which assumes a fixed time discretisation scheme for the dynamics, we find that existing data-to-data Schr\"odinger bridge algorithms can be substantially improved by learning the diffusion coefficient of the dynamics. Finally, we apply the newly developed algorithm to the problem of sampling posterior distributions in latent spaces of generative models, thus creating a data-free image-to-image translation method. Code: https://github.com/mmacosha/d2e-stochastic-dynamics
- Abstract(参考訳): シュリンガー橋の問題は、ある輸送コストを最小限に抑える2つの限界分布をブリッジする確率力学系の発見に関係している。
この問題は確率的ケースへの最適輸送の一般化を表しており、拡散モデルや流れのマッチングとの接続や自然科学への応用から注目されている。
しかし、既存のアルゴリズムはすべて、両方のディストリビューションのサンプルが利用可能である場合にのみ、そのようなダイナミクスを推論することができる。
本稿では,データサンプルへのアクセスを伴わずに,正規化されていない密度の分布を1つ(または両方)与えたときに,Schr\"odinger Bridgeをモデル化するための最初の一般手法を提案する。
提案アルゴリズムは, 拡散サンプリング器の訓練における非政治強化学習の最近の発展に触発されて, 反復比例フィッティング法(IPF)をデータフリーケースに一般化したものである。
提案したデータ・トゥ・エネルギIPFの合成問題に対する有効性を示し,マルチモーダル分布間の輸送をうまく学習できることを見出した。
力学の時間差分法を仮定した強化学習定式化の二次的な結果として、既存のデータからデータへのシュリンガーブリッジアルゴリズムは、力学の拡散係数を学習することで大幅に改善できることがわかった。
最後に、新たに開発したアルゴリズムを、生成モデルの潜在空間における後続分布をサンプリングする問題に適用し、データフリーな画像から画像への変換法を作成する。
コード:https://github.com/mmacosha/d2e-stochastic-dynamics
関連論文リスト
- Diffusion models for multivariate subsurface generation and efficient probabilistic inversion [0.0]
拡散モデルは、深い生成モデリングタスクのための安定したトレーニングと最先端のパフォーマンスを提供する。
本稿では拡散モデルに固有のノイズ汚染を考慮した近似法を提案する。
統計的ロバスト性は有意に向上し, 後部確率密度関数のサンプリングが向上した。
論文 参考訳(メタデータ) (2025-07-21T17:10:16Z) - Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution Learning [79.65014491424151]
量子離散化拡散確率モデル(QD3PM)を提案する。
これは、指数関数的に大きなヒルベルト空間における拡散と denoising を通じて合同確率学習を可能にする。
本稿では,共同分布学習における量子的優位性を生かして,生成モデルの新たな理論的パラダイムを確立する。
論文 参考訳(メタデータ) (2025-05-08T11:48:21Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Convergence Analysis of Discrete Diffusion Model: Exact Implementation
through Uniformization [17.535229185525353]
連続マルコフ連鎖の均一化を利用したアルゴリズムを導入し、ランダムな時間点の遷移を実装した。
我々の結果は、$mathbbRd$における拡散モデルの最先端の成果と一致し、さらに$mathbbRd$設定と比較して離散拡散モデルの利点を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-12T22:26:52Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Diffusion Normalizing Flow [4.94950858749529]
本稿では微分方程式(SDE)に基づく拡散正規化フローという新しい生成モデルを提案する。
このアルゴリズムは、2つのニューラルSDEで構成されており、データに徐々にノイズを加えてガウスランダムノイズに変換するフォワードSDEと、データ分布からサンプルへのノイズを徐々に除去する後方SDEである。
提案アルゴリズムは,高次元データ密度推定と画像生成の両タスクにおける競合性能を示す。
論文 参考訳(メタデータ) (2021-10-14T17:41:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。