論文の概要: Enhancing Safety in Diabetic Retinopathy Detection: Uncertainty-Aware Deep Learning Models with Rejection Capabilities
- arxiv url: http://arxiv.org/abs/2510.00029v1
- Date: Fri, 26 Sep 2025 01:47:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.10963
- Title: Enhancing Safety in Diabetic Retinopathy Detection: Uncertainty-Aware Deep Learning Models with Rejection Capabilities
- Title(参考訳): 糖尿病網膜症検出における安全性向上 : 不確実性を考慮した拒絶能力深層学習モデル
- Authors: Madhushan Ramalingam, Yaish Riaz, Priyanthi Rajamanoharan, Piyumi Dasanayaka,
- Abstract要約: 糖尿病網膜症(DR)は視覚障害の主要な原因である。
深層学習モデルは網膜画像からDRを特定することに成功している。
本稿では,不確実性を考慮したディープラーニングモデルにおいて,低信頼度予測を拒否する拒否機構を含む代替手法について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diabetic retinopathy (DR) is a major cause of visual impairment, and effective treatment options depend heavily on timely and accurate diagnosis. Deep learning models have demonstrated great success identifying DR from retinal images. However, relying only on predictions made by models, without any indication of model confidence, creates uncertainty and poses significant risk in clinical settings. This paper investigates an alternative in uncertainty-aware deep learning models, including a rejection mechanism to reject low-confidence predictions, contextualized by deferred decision-making in clinical practice. The results show there is a trade-off between prediction coverage and coverage reliability. The Variational Bayesian model adopted a more conservative strategy when predicting DR, subsequently rejecting the uncertain predictions. The model is evaluated by means of important performance metrics such as Accuracy on accepted predictions, the proportion of accepted cases (coverage), the rejection-ratio, and Expected Calibration Error (ECE). The findings also demonstrate a clear trade-off between accuracy and caution, establishing that the use of uncertainty estimation and selective rejection improves the model's reliability in safety-critical diagnostic use cases.
- Abstract(参考訳): 糖尿病網膜症(DR)は視覚障害の主要な原因であり、効果的な治療法は時間的・正確な診断に大きく依存する。
深層学習モデルは網膜画像からDRを特定することに成功している。
しかし、モデルによる予測にのみ依存し、モデルの信頼性を示すことなく、不確実性を生み出し、臨床設定において重大なリスクを生じさせる。
本稿では,低信頼度予測を拒否する拒否機構を含む不確実性を考慮した深層学習モデルの選択肢について検討する。
その結果、予測カバレッジとカバレッジ信頼性のトレードオフが示されている。
変分ベイズモデルはDRを予測する際により保守的な戦略を採用し、その後不確実な予測を拒絶した。
このモデルは、受理された予測の正確性、受理されたケース(カバレッジ)の割合、拒絶率、期待校正誤差(ECE)などの重要なパフォーマンス指標を用いて評価される。
また,不確実性推定と選択的拒絶を用いることで,安全クリティカルな診断症例におけるモデルの信頼性が向上することが確認された。
関連論文リスト
- Trust-informed Decision-Making Through An Uncertainty-Aware Stacked Neural Networks Framework: Case Study in COVID-19 Classification [10.265080819932614]
本研究は、放射線画像から新型コロナウイルスの信頼できる分類のための、不確実性を考慮した重畳ニューラルネットワークモデルを提案する。
このモデルは、確実な正確な予測を正確に識別することに焦点を当て、不確実性を考慮したモデリングにおける重要なギャップに対処する。
このアーキテクチャはモンテカルロのドロップアウトやアンサンブル技術を含む不確実な定量化手法を統合し、予測信頼性を高める。
論文 参考訳(メタデータ) (2024-09-19T04:20:12Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Towards Reliable Medical Image Segmentation by Modeling Evidential Calibrated Uncertainty [57.023423137202485]
医用画像のセグメンテーションの信頼性に関する懸念が臨床医の間で続いている。
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を活用することで、医用画像分割の確率と不確実性を明示的にモデル化する。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
統計的に厳密な不確実性定量化の欠如は、AI結果の信頼を損なう重要な要因である。
分布自由不確実性定量化の最近の進歩は、これらの問題に対する実用的な解決策である。
本稿では, 正しい狭窄の重症度を含むことが保証される順序予測セットを形成する手法を実証する。
論文 参考訳(メタデータ) (2022-07-05T18:01:20Z) - On Calibrated Model Uncertainty in Deep Learning [0.0]
損失校正されたベイジアンフレームワークの近似推論を,ドロップウェイトに基づくベイジアンニューラルネットワークに拡張する。
損失校正された不確実性から得られる決定は、簡単な代替手段よりも、診断性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2022-06-15T20:16:32Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Uncertainty-Aware Training for Cardiac Resynchronisation Therapy
Response Prediction [3.090173647095682]
予測の不確実性の定量化は、そのような解釈可能性を提供し、信頼を促進する1つの方法である。
心臓磁気共鳴画像からの心再同期治療応答予測のためのDLモデルのデータ(アラート的)とモデル(緊急的)の不確かさを定量化する。
我々は、既存のDL画像に基づく分類モデルを再訓練し、正しい予測の信頼性を高めるために使用できる不確実性認識損失関数を予備検討する。
論文 参考訳(メタデータ) (2021-09-22T10:37:50Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。